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FOREWORD

The Seminar on Fundamentals of Quantum Optics II was the third meeting
on Laser Phenomena held at the Bundessportheim in Obergurgl. It was
attended by 41 physicists from Austria, The Federal Republic of Germany,
France, Great Britain, Hungary., Italy, Poland, Switzerland and The
United States, who work actively in the rapidly developing field of
quantum optics.

The first meeting in this series (Obergurgl, February 26 - March 3,
1984) also addressed the subject of quantum optics and was published as
Fundamentals of Quantum Optics. Acta Physica Austriaca, Vol. 56,

No. 1 - 2, 1984.

The present Seminar offered the opportunity to discuss at leisure
problems of mutual interest to theoreticians and experimentalists who
are working on various aspects of the field of quantum optics. The
intention was to bring together people who are doing research on quantum
chaos, squeezed states, quantum jumps, gquantum electrodynamics in a

cavity, cooling and trapping of particles, and on other fundamentals.

At the seminar 18 Invited Lectures were given by:

N.B. Abraham {Bryn Mawr) H.J. Kimble (Austin)

Z. Bialynicka-Birula (Warsaw) P.L. Knight (London)

J. Dalibard (Paris} G. Leuchs {MPI Garching)
¥. Ertmer {Bonn) P. Meystre (Tucson)

E. Giacobino {(Paris) J. Mlynek (Ziirich)

R. Graham {Essen} J.M. Raimond (Paris}

F. Haake (Essen) H. Risken {Ulm}

S. Haroche {Paris and New Haven) A. Schenzle {Essen)

J. Javanainen {Rochester) P.E. Toschek (Hamburg)

In addition, there were 10 contributed talks given at the meeting.
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The following pages present the full text of the invited lectures and
the abstracts of the contributed papers. The editor is grateful to the
contributors for their collaboration in preparing their typescripts for
rapid publication.

The active yet relaxed atmosphere of the Bundessportheim at Obergurgl,
surrounded by the snow-capped peaks of the Utztal Alps, provided a
congenial setting for a very stimulating and rewarding meeting. It is a
pleasure to thank all participants for their interest and enthusiasm.

The most valuable secretarial assistance of Miss E. Merl is gratefully

acknowledged.

Innsbruck, April 1987 F. Ehlotzky
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QUANTUM CHAOS FOR KICKED SPINS

F. Haake, M. Kus, and R. Scharf
Fachbereich Physik, Universitadt~GHS Essen
Postfach 103 764, D-4300 Essen

The quasienergy statistics for kicked quantum systems displaying chaos in the classi-
cal limit fall into three universality classes. These correspond to the socalled
orthogonal, unitary, and symplectic ensembles of random matrices. Realizations of all
three kinds of dynamics with kicked spins will be presented. The universality of
level repulsion will be demonstrated by dynamical and statistical arguments. The
transition from regular {level clustering) to irregular behavior {(level repulsion)
will be discussed briefly.

Classically chaotic motion of spin systems has been observed by subjecting small
crystalline magnets with an easy plane of magnetization to a magnetic field varying
periodically in time [1]. The relevant dynamical variables are the components of a

global spin vector J which moves with its length conserved,
J2 = j{j+1) . (1)

The experiments in question involve quantum numbers j sufficiently large for quantum

effects to be entirely negligeable.

Theoretical investigations have shown that for quantum numbers j of the order of
several hundred very interesting quantum mechanical aspects of chaotic motion arise
[2]. Present-day technology should allow the observation of these effects with small

clusters of atoms.

In this talk the quasienergy statistics of kicked quantum spins obeying (1} will be

* N . N .
Permanent address: Institute for Theoretical Physics, University of Warsaw,

Hoza 69, 00-681 Warsaw, Poland



discussed. We think of a periodic sequence of delta~shaped kicks such that the unita-

ry time evolution operator transporting the wave vector from kick to kick reads

.k .
-1 J2 -ip J
Tz Y, (2)

U=e
The factor in U obviously describes a precession of J around the y axis by an angle
p; this precession can be realized by exposing the system to a magnetic field point-
ing in the y direction. The second factor in U might be due to a magnetic anisotropy
and may be interpreted as a nonlinear torsion around the z axis by an angle propor-
tional to sz/j. ¥We shall refer to the coupling constant k as to the kick strength.
Powers of U, U™ withn =1, 2, 3, ..., yield a stroboscopic description of the evolu-

tion of the quantum wave vector of the spin.

Fig. 1la-d. Classical motion on the unit sphere. Shown are some trajectories on the
northern hemisphere (Y » 0). Fixed points are labeled by 1, points on n-cycles by n;.
/2, k 2.5;

n/2, k = 6.

It
n

a: p=n/2, k =2; b:
d:

P
¢: p=n/2, k = 3; P



Classical behavior emerges in the limit j - =; the classical vector X = lim J/j moves
J-Ow

on the unit sphere {2]. As a background to our discussion of finite j we present in

Fig. 1 portraits of stroboscopic trajectories of the classical top for p = w/2 and

various values of the kick strength k. The interesting message to be drawn is the

predominance of regular motion for small k (k ¢ 2.5) and of chaos for k ) 3.

The classical transition from mostly regular to mostly chaotic behavior is paralleled

by a dramatic change in the guantum mechanical eigenvalue spectrum of the operator U.

P(S)}

0.5

P(S)

¥Fig. 2. Level spacing statistics, a: under

conditions of classically regular motion .

b - d: under conditions of classical chaos. 05
b: j = 500, with generalized time reversal

invariance T gives linear repulsion.

¢: j = 500, no T, quadratic repulsion.

d: j = 499.5, with T, no parity, quartic

repulsion (symplectic case) [4].




Since U is unitary the eigenvalues are unimodular and can be characterized by eigen-

phases Phe

ir,
Uiny = e iny , (3}

which all lie in the interval 0 < P, < 2m. Upon diagonalizing U for, say, j = 500 one
finds that the fn tend to cluster for small k but display repulsion for large k.
Numerically obtained level spacing histograms for the operator (2} are given in Figs.
2a {clustering limit) and 2b {repulsion limit). The smooth curve in Fig. 2b is an
average level spacing distribution for Dyson’s orthogonal ensemble of unitary (2j+1}
by (23j+l1) matrices generated from any one such matrix by arbitrary orthogonal
transformations {3].

The level spacings of our U for large k are thus typical of any randomly chosen
symmetric unitary matrix of like dimension. Symmetric wnitary rather than general
unitary matrices are of relevance here because of the following time reversal

invariance of our U,

rurl=yl

(4)

where XK is the complex conjugation operatiom [2]. In fact, the invariance {4) places
a restriction on the matrix elements of U so as to leave only one real parameter free

in each off-diagonal element.

By breaking the time reversal (4} we obtain matrices U which have two real parameters
free in each off~diagonal element and are thus genuinely unitary. Examples of such
evolutions have been discussed in [2]. Fig. 2c shows a level spacing histogram per-

taining to the level-repulsion limit of

i fvefniy 12 s 12 s
. ik /2])Jx . 1(k/2])Jz . 1pJY

{5}
for which no time reversal holds. The smooth curve corresponds to Dyson’s unitary
ensemble of unitary (2j+1) by (2j+1) matrices [3]. The important difference between
the "orthogonal" and the "unitary” case lies in the degree of level repulsion. In

both cases the level spacing distribution P(S) rises like a power out of the origin,



P(s) ~ sP . (6)
The exponent 8 is unity for the evolution {2) and two for the evelution (5)}.

Ve have recently succeeded [4] in constructing an evolution operator for kicked spins
the level spacing statistics of which pertains to the universality class of Dyson’s
symplectic ensemble [3]. Group theoretical arguments show that realization of that
case requires half integer j, the presence of an antiunitary time reversal invariance
and the absence of any other discrete rotation invariance [2c]. As shown in Fig. 24
the level repulsion in that case is quartic, 8 = 4. It is interesting to realize that
this repulsion enhancement is related to Kramer'’s degeneracy. Each level P is doubly
degenerate, i.e. has two independent eigenvectors |n> and N> associated with it.
Each level pair LAV ¢

m
elements of U. The potentially sixteen real parameters in these elements are reduced

(with ¥, # P.) thus gives rise to eight offdiagonal matrix
in number to four by unitarity and time reversal.

The explanation of the success of random matrix theory with respect to the level
spacing distribution is a long standing problem. A bit of progress was achieved when
the mathematical equivalence of the quantum mechanical eigenvalue problem {(3) to the
classical Hamiltonian dynamics of a system of N interacting particles [5] in one
spatial dimension was recognized [6]. Instead of formulating the equivalence in

question for an evolution operator of the form (2), i.e.
U= elkV Uo (1)

with an exactly solvable part Uy and a perturbation V (not commuting with Uz} we

propose to study

U= oiKV/2 y (ikV/2 (8)

Both operators U in (7) and (8) have identical eigenphases L {as well as matrix
elements «<njvVim» = vnm) and are thus equivalent for our purpose. The symmetrized
version (8), however, is slightly more convenient to work with. Moreover, we first
restrict ourselves to integer j and time reversal invariant dynamics. The eigenphases
Pn as well as the eigenvectors [n> of U depend on the weight k of the perturbation.
That k dependence can be described by a set of differential equations obtained by
differentiating the eigenvalue equation (3) with respect to k. These differential

equations take the form of classical Hamiltonian equations if we associate



k = time
L = position on a unit circle
nivind> = momentum Pn

o

4 sin [(Pn-Pm)fz] <n|Vim angular momentum Com

use angular momentum Poisson brackets for the eij [7,8] and the N particle

Hamiltonian

o 1 A 1
H=F Y pi+qh § —A0 = lierve. (9)
n=1 n¥m sinz[(v’n-?m)/z]

Note that the interaction potential in (9) is repulsive.

For our purpose it is most convenient to write Hamilton’s equations for the ficti-

tious N particle system as differential equations for two N by N matrices I and F,
$L-mu, E-me, (10)

where [ , ] denote commutators. The matrix M occuring here plays the formal role of a

generator of infinitesimal "time" translations. All three matrices L, F, and M are

composed of the coordinates ¥, the momenta p, and the angular momenta &,

Py 55+ (1 - 835 ey cot [tr-pp)/2]

1 _
Fig =1 (1~ 835 &5 (11)

1 -
13 =¥ {1 - 513) 6i3~/51n2 {(Pl_?])/z] .

M
Due to the commutator structure of the equations of motion {10) and the cyclic inva-
riance of the trace of matrix products we immediately find the traces of arbitrary
products of L and F,

C=tr (LLF" L9F" ...) , (12)

to be constants of the motion (9]. Egs. (10,11,12) remain valid even for halfinteger



j and for dynamics without time reversal invariance.

We are now equipped for a statistical mechanical discussion. Let us first take our
fictitious N particle system to be in equilibrium. Presumably, such a "time"-indepen-
dent equilibrium behavior is reached for large k. Any normalizable function of the
constants of the motion {12} is a potential candidate for an equilibrium phase space
Probability density of the P, p, and €. Were we concerned with real particles it
would be natural to admit only the energy (9)}.Since H doeés not appear to have any
clearcut physical meaning for the original quantum mechanical eigenvalue problem we
see no reason to prefer it to other constants of the motion. We therefore propose to
explore a generalized canonical ensemble in which all independent constants are
admitted,

-1

p(rp.0) =27 exp (-2 arcy] (13)

Wwith Lagrange multipliers a, determined by the ensemble means of the Cp-

The distributions (13) contain more information than we are interested in. Upon inte-
grating out the momenta p and angular momenta ¢ we obtain probability densities for

the coordinates, i.e. for the eigenphases of the evolution operator (7),

N
P(p) = [ (nzl a pn] {ngm af Enm} p(P,p,8) . (14)

The index 8 in the angular momentum differentials indicates whether each particle
pair {i.e. pair of eigenphases of U) is represented by one, two, or four independent
real parameters in the angular momentum €, (i.e. the offdiagonal elements V. of the
perturbation V in U). The index B is determined by the symmetries of U as discussed

above.

The positions Pi enter the probability density P{P) only through the matrix L in
(12), There would thus be no P dependence of P{P) at all if only constants of the
motion of the form tr F” were admitted in (13), a case we exclude from the following
consideration. Incidentally, the energy H = % tr (L2~F2?), perhaps the most natural
constant of the motion to be included in (13) provides P(¥) with a nontrivial ¥
dependence. We should now appreciate that the constants ¢ involving factors L and
thus the canonical distribution (13) depend singularly on the spacings Pi—Pj.
Obviously, this means level repulsion in the spectrum of the evolution operator (7)

for large enough k. To bring about the level repulsion implied by the reduced



10
distribution P(P) it is convenient to change integration variables in (14) as
b5 = &y sin[tr-p /2] . (15)
‘The corresponding change in the integration measure is

& o5 = |sin[tr;-p))/2)|P aP 7y (16)

and we thus arrive at

= 1 =" B
P(p) [iqj ‘s1n[(?1 PJ)/Z]( } p{¥P) (17}
vwhere
P) = md p, n dﬁ z..
p(¥) {i Pl] [i(j 13] 2] (18)

no longer vanishes for AP = O. The behavior of P{(P) for Af -+ O, i.e. the degree of
level repulsion in the quantum spectrum of U for large k is thus seen to be dominated
by the first factor in (17) and to be independent of the choice of the constants ¢
admitted in the ensemble (13). The remaining factor in (17), p(¥), takes care of the
behavior of P(¥) at large spacings and does depend on the choice of the constants C.
Further investigations are necessary to clarify the role of p(P) for the level spac-

ing distribution and other spectral characteristics.

From the statistical mechanical point of view adopted here the transition from "regu-
lar” level clustering to "irregular” level repulsion with increasing weight k of the
perturbation V in {(7) appears as a relaxation into equilibrium. To shed some light on
the equilibration process we consider two constants of the motion for the fictitions

N particle system. Of the two constants of the motion we have in view one is

IA 2
— teml® | Ltr wer2) (19)

ComgIP I ) -
n n#m 51n2[(?n-Pm)/2]

(which for integer j and time reversal invariant dynamics is the Hamiltonian (9)) and
the other

Cr= ) lepgl? =tr F2. (20)
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Conservation of ¢, implies that the dynamics of the N particle system takes place on
a hypersphere in the subspace spanned by the angular momenta &. At k = O, them, it is
typical for the perturbation V to have nonvanishing matrix elements Vom in the
eigenrepresentation of U(0) = U, only close to the diagonal [10]. Consequently, the
number of initially nonvanishing angular momenta L7 is not N{N-1) but rather only
proportional to N. As k increases, however, the matrix V tends to fill up with
nonzero elements and more and more angular momenta enm take on appreciable values.
This is obvious from the equation of motion for Com following from the egquations
(10),

4 -1 L =2 - - ain=? -
Tlam=% ) s yp (sin? [rpriz) - sin® [erepia)) (21)
i{#n,m}
Therefore we expect I l€,n! to increase with k. From energy conservation for the
n#m

fictitious particles we infer that close approach of two particles is possible for
all pairs with vanishing &,n- Indeed, (19) implies a lower bound for the distance of

any pair of particles,

e, - Pl 2 3 1e 1/ T - (22)

a's " w g n ¥
X
t ]
01
® -3 °
s, °
E
smm
@
08 :
L ]
ssd R
o }m=50"
x X X j= 500"
¥ig. 3, Typical lover bound o
8 = Ap/AP for level spacings o. 5. 10
{defined in the text) versus K

kick strength, for j = 50
and j = 500.



At k = O only a tiny fraction (~ 1/N) of the particle pairs has close approach ener-
getically forbidden. But as more and more angular momenta become finite in magnitude
with increasing k the fraction of particle pairs with forbidden close encounters
grows. Equilibrium will be reached when nonzero angular momenta &, force all partic-
les to stay apart from oneanother at distances of the order of the mean level

spacing.
As a rough estimate for typical smallest level spacings we might take the average

af = NI z %‘ wnmi/‘/ [+ {23)
n#m

which has the mean level spacing

AP = 2n/N (24)

as upper bound. Our above arguments indicate that A4 should increase with k. Fig. 3
confirms that prediction for the kicked top described by the evolution operator (2).
A5 one would expect in the vicinity of the integrable case (k = O} the normalized
quantity § = AP/ZP goes to zero for increasing N = j. It is interesting to see § to
display a rather pronounced growth in the range 2.% ¢ k ¢ 3.5 which is precisely the
range in which the classical top makes the transition from dominantly regular to
dominantly chaotic behavior {see Fig. 1). The saturation of § for k > 3.5 corresponds
to the practically complete coverage of the phase space of the classical top with
chaotic trajectories. Although the saturation value seems to be independent of j,

differences between the two parities are visible.

¥e gratefully acknowledge support by the BAlexander-von-Humboldt-Stiftung and the
Gesellschaft von Freunden und Forderern der Universit&t~Gesamthochschule Essen. Spe-

cial thanks for discussion and help are due to G. Eilenberger.
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LOCALIZATION AND DELOCALIZATION IN A DISSI-
PATIVE QUANTUM MAP

Th. Dittrich and R. Graham
Fachbereich Physik, Universitiét €ssen GHS
D-4300 Essen, F.R. Germany

Abstract

The time evolution of the density matrix genmerated by a quantum version of the
*standard map’ (kicked rotator) with dissipation is studied. The guantum ensemble
corresponding to the classical invariant measure on the strange attractor is ob-
tained and discussed. The influence of weak dissipation on localization phenomena
in the quantized standard map is assessed qualitatively and studied quantitatively
in numerical experiments. Complete delocalization is found for sufficiently strong
dissipation. For extremely weak dissipation a remnant of quantum localization is

found to survive even in the steady state.

1. Introduction

In recent years there has been a strong interest in the behavior of quantum sys-
tems under the influence of intense externally applied periodic fields {(cf. reviews
given in [1], [2],[3]). Examples which have been investigated both theoretically and
experimentally include molecules vibrationally excited by strong infrared laser
fields and Rydberg atoms in strong microwave fields. From these studies it has be-
come clear {i) that the classical dynamics of these systems is chaotic, and (ii)
that this property alone already accounts for the main experimental results, such as
the ’fluence dependence’ of the average number of absorbed quanta in infrared ex-
citation of melecules [3], and the observed strong multi-photon ionization of
Rydberg ataoms in non-resonant microwave fields below the ionization threshold in

corresponding static fields [4].

However, given the fact that one is really dealing with guantum systems in these
experiments the question has naturally been asked what the quantum corrections to
the chaotic classical behavior should be. This guestion has been dealt with in a
vast literature, an important part of which has concerned itself with two main sub-
jects: (i) the investigation of a simple model system, the 'periodically kicked pla-

nar rotator® which is clsssicslly equivalent to Chirikoves *standard map’ [5] and
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(i1) the analysis of a physically more realistic model of a l-dimensional hydro-

gen atom in an external microwave field [6]. From this work one has learned that im-
partant quantum effects in periodically driven classically chaotic systems can, in
fact, exist, arising from subtle coherence effects in the quantum wave functien des-

cribing a system which is classically chaotic.

So far, these effects are best understood in the example of the kicked rotator to
which we shall confine our discussion in the following. A rather close physical real-
ization of this model by the microwave excitation of rotational bands in a diatomic
Molecule has recently been proposed [7]. Let us briefly recall some of the important

Tesults for the kicked rotator. Its Hamiltonian takes the form

H=£ - X o 2ma b Ble- (1.1)
2 (27[)2005 nqngm( ",

where we have chosen units in which the moment of inertia of the rotator and the
Period of the kiclis is unitary. The parameter K is a measure of the strength of the
kicks. Integrating the canonical equations of motion following from (1.1) between

two times n , n+d immediately preceding two subsequent kicks we obtain the
"standard map’

Phse1 = Pa -% SinZ.nqn .
(1.2)
q"*‘l: (ph,q"'qn) (W\Dd 1) ’

Where g,:=g(n), p,i=p-c), and ¢ ¢t . Egs. (1.2) may be read as classical or
&S guantum mechanical Heisenberg equations of motion with the Poisson bracket or com-
Mutator

{p.a} 2 [pal=1. (1.3)
The quantum map in the Schrodinger picture takes the form

1

d M

S LK sl
'(‘Um+1>___u|qjy‘>:e ‘2% e‘h 4ot 9

(¢, . (1.4)

The classical map for K>0 behaves like a typical non-integrable Hamiltonian system
Which is neither integrable nor fully chaotic [8]. For 0<K<4 the classical map has
stable l-cycles (0, m) where m are the integers. For 0<K<2 there are also stable
Z-cycles (0, m + 1/2), (1/2, m + 1/2) whose angular momentum is in between that of
the 1-cycles. For K< K.= 0.9716 the l-cycles and the Z-cycles are separated by a
tontinuous KAM curve P==P(q) (Oﬁqe'1) . In this domain chaos exists only locally
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in phase space. For K>K the last KAM torus has broken down and there is chaos on a

large scale in phase space. Typically, the mean square angular momentum grows diffu-
sively, i.e. linear in n, in this regime {p*>=D(K)n . Nevertheless for arbitrari-
ly large values of K there also exist windows of stability for cycles of period 2 or
higher and for 'accelerator modes’ ( é&-Arctani? ym+Ln ) for integer L whose angu-

lar momentum increases linearly with the number of kicks.

Quantum mechanically, there is strong numerical and theoretical evidence [5] that

the diffusive motion of <p*) is destroyed by coherence effects of the wavefunction.
The Floquet states af {1.4) satisfying

lu> =€ > (1.5)

for typical values of K>K., seem to be exponentially localized in the angular mo-
mentum representation due to a mechanism similar to Anderson localization in dis-
ordered systems in real space [9]. As a result any initial wavefunction lye> lo-
calized in p has appreciable overlap only with a finite number of Floquet states
spanning a finite dimensional subspace and remains in that subspace under the action
of (1.4). lwn> therefore remains localized in the angular momentum representation in
the course of time precluding diffusion of angular momentum. There are exceptions

to this typical case, however. In the case of 'quantum resonances’ where in the

chosen units

2xh e B, (1.6)

the spectrum of Floguet exponents w, in (1.5} is continuous, the Floquet states (1.5)
are extended, and the mean square angular momentum for large times increases quadra-
tically in n [lﬂ]. Again, this is a quantum mechanical coherence phenomenon, which
supersedes the classical diffusive behavior. Furthermore, it has been shown that there
is an infinite set of measure zero of irrational values of 2x#% where (1.5) has a
possibly singular continuous spectrum [11]. The physical consequences of this mathe-

maltically interesting result seem not quite clear at present.

The quantum effects which have been mentioned occur as a consequence of coherence
and are therefore very fragile against any perturbations reducing coherence in a
wavepacket [12]. Damping mechanisms are very important perturbations of this kind.
It is the purpose of the present contribution to review our recent work concerning
the influence of quantum effects in the dissipative standard map C}3 - 16]. A phy-
sical system approximately realizing this case is a diatomic molecule in a sur-

rounding medium inducing frictional effects excited rotationally by a microwave
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field. The classical map, in this case, takes the form

e 2_}<; sin2ngp,
(1.7
C‘m‘" =(‘%+Pn+1 ) (m0d1>i

with 0¢ A < ], Under the map (1.7) phase space volume is reduced by a factor A in

each step. Therefore the w -limit sets of eq. (1.7) (i.e. the invariant manifolds
approached for n- o ) have zero volume in phase space and are either fixed points,
limit cycles, or strange attractors with fractal dimension d< 2. As is easily seen
from the first of egs. (1.7}, the w -limit sets must all lie in the compact region

K
A
T 21y (1.6)

Ipl
For vi=(1-1)> O the w-limit sets must approach invariant manifolds of the con-
Servative systems and the bound (1.8) is removed to infinity. A discussion of the
Periodic orbits of the classical map has been given in [17]. In the following sec-
tions we first describe a quantum version of the map (1.7) in the form of a master
equation (section 2). Then we consider the stationary state of the quantum map
(section 3), i.e. quantum effects on the invariant probability distribution around
8 strange attractor. Finally, in section 4 we turn to dynamical results for the
Mean square angular momentum of the rotator and consider the fate of localization

and quantum coherence as a function of the dissipation parameter y = (1-1).

2. The Quantum Map

A quantum map defines the transformation of a state at the discrete time n to a
State at the subsequent time n+l. For a conservative guantum system a state is des-
Cribed by the wavefunction l¢,> and the guantum map is given by a unitary eperator
Uas in eq. (1.4). The state of a dissipative quantum system, on the other hand, is
defined by the density matrixg, . A quantum map 9,-¢,,, can still be defined in
this case, provided the knowledge ofg, is sufficient, in principle, to predict the
state Sneq - This is only possible, if memory effects are negligible, i.e. if the
time-evolution of the density matrix is Markovian, which we assume in all that fol-
lows, Then an operator (more precisely a superoperator) G in the linear space of den-

Sity matrices exists which defines the map

S’n+1=§9h. (2.2)

The operator G must preserve the normalization, positivity and hermiticity of the

density matrix g and must be consistent with the uncertainty principle, which has
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e.qg. the consequence

Tﬁyﬁ 1, (2.3)

where equality holds for a pure state.

An operator G with these and the additionsl property that the classical limit of
the quantum map reproduces the classical map {1.7) has been given in [133, but, as
stated there, even within these restrictions, it is not unique. For simplicity the
operator G was chosen as a product G=U'D where U is a unitary operator in the space
of density matrices equivalent to (2.1) if applied to & pure state, and D is a real

operator describing a purely dissipative process.

This factorization of the quantum map corresponds to a factorization of the classi-
cal map into a purely dissipative step

pﬂ*‘% =lpn ’
(2.4)
C’]m% = Oln L]
and the purely conservative map
K
Pm»‘l = prw% - i;sln Zﬂqnai )
{2.5)

qm‘l = (th% +Pm-¢1)(mod‘1)3

which, together, give back the dissipative map (1.7). Quantum mechanically, the dissi-
pative step (2.4) is described by the solution of the initial value problem of the

Markovian master equation

X Lg=1hnal(lrgrtI+ s, ']), (2.6)

+
with [*:=(r)" and I defined by

FZSZVITI'H—TXH +(Z}/]—L_|'|(+1><u. (2.7)
&0

(20

In (2.7) we use the angular momentum representation defined by
plid=2nht{L). (2.8)

£q. (2.6) describes the absorption of quanta of the absolute value of {pl by a re-
servoir. We use the solution of eq. (2.6) to define D by
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9ne3=Dg, =exp(L)g,, (2.9)
and U by
Snrr = UQn, 3 = UgaUT, (2.10)

where the unitary pperator U in the space of state vectors is given by eq. (1.4).

EXPlicitly, the quantum map in angular momentum representation then takes the form

g tm'> = 5 G(Um' Hm)<Cignimy (2.11)
’m

with

G(¢,m’ |, m)r—)\%(luﬂm') [U(U,m'lt,m) +

in (1L, Tm1) )
+@t-m,°':§(“” l (%?‘)J V(,J”)(IT') U(t:m'llvl“:“,J,m~|'—:-|J)], (2.12)

U(Em lLm) = L UR S miutim®D, (2.13)

Here Gpo is unity for p20 and vanishes otherwise. The operator G , asccording

to eq. (2.12) is given by a sum

£§::2:§5 ’
3

where each of the operators g% describes the propagation from time n to n+l with
the absorption of j guanta of Ipl by the reservoir. The superposition of the §§

in eq. (2.12) shows that processes with different values of' j are mutually inco-
herent, while coherence is preserved for all amplitudes from time n to n+l with
the same value of j - This competition between coherent and incoherent pro-
Cesses is the main feature of G . Details of course depend on the assumptions we
Made on the form of the master equation. However, the general fact that some ampli-
tudes add coherently while others add incoherently is independent of these assump-
tions, and we can therefore hope that the map (2.12) can give us insight in the
Qualitative consequences of this competition. In the following it is useful to in-
troduce the representation of the density matrix by the Wigner quasi-probability
density in the phase space Ozq¢1,-2<p<oo, It is defined by
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W, (pq)= f—\: WY (q)8(p-tht), (2.14)
© . oy i , ,

ACHEDY %—1)- e ¥ A ig1St s (2.15)
(=0

Two samewhat unusual features of this representation are worth pointing out. One

is the fact that W/{(p,q) has support in phase space not only on the guantized values
of angular momentum p, =2nhm with integer m but also at momenta p, where m is
half-integer, as is shown by eq. {2.14). A second related peculiarity follows from
eq. (2.15) which shows that W\’(q) for l=2m is periodic in g with period 1/2
rather than 1, while W' (q) with (=2m+¢1 is antiperiodic in g (i.e. changes sign)
with period 1/2. It follows that the unphysical values of angular momentum drop out
if W,{pq) is integrated over the unit interval of q to yield the probability dis-
tribution of angular momentum. The Wigner representation is particularly useful for
a discussion of the classical limit of the quantum map and the leading quantum
corrections. Detailed derivations are given in [13] and we merely present the result
here., Instead of presenting the map for the Wigner quasi-probability distribution [l}]

it is rather more transparent to write down an equivalent 'quasi-stochastic’ map [18].
It takes the form

K .
Puet = AP0~ 255 (22 (an* E,.0)* M ner » (2.16)
Qnrt = (qn * Prat gﬂ“ ) (mod 1),

where the ’quasi-noise’ terms 7%,,, and g’w1 are uncorrelated for different values of
n {expressing the basic Markov assumption we made) and have non-vanishing second and

third order cumulants

2, (-2)h
<§n> - 32.7(32/‘%.% s
e > =2!’J—( A(-2)1p,.4 1, (2.17)

Emo =0,
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2
<’>2,f’>=’2—ﬁ1—“ﬂg Ksin 2ngn-4 . (2.18)
Higher arder cumulants occur also, but are proportional to higher powers of 4 and
herce negligible for+h sufficiently small. The fact that third order cumulants of 7,
@ppear has the consequence that », is distributed with & quasi-probability density
which is pot everywhere non-negative. Hence, %, cannot be simulated by classical
Noise, except in an approximation where the third order cumulant is neglected. In the

latter approximation the quantum map is indistinguishable from a classical map with
Noise,

The map (2.16) is stochastically equivalent to a map for a guasi-probability

density Cﬁ%(f9q) from which the Wigner quasi-probability density {2.15) can be ge-
Nerated by

W (g) = % [\r/t/H (nhl, q) + 1) \X/m (sht, q+‘;:)] . (2.19)

Hence, neglecting third and higher order cumulants, eq. (2.16) can be used to ge-

Nerate a semi-classical approximation for the Wigner function by stochastic simu-
lation,

Semi-classical approximations of this kind have been used in earlier work on
Quantum effects in chaotic optical systems like the complex Lorenz model (single-
Mode laser) [19] and second harmonic generation [20]. In these more realistic sys-
tems it has so far not been possible to improve on this approximation, while this
1s possible in our present quantum map. Therefore, it is interesting to compare exact

and semi-classical results in some cases in the following.



22

3. Steady State
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Time evolution of the total energy over the first ten iterations (a) and reduced
angular momentum distribution in the stationary state (b), shown for the quantum me-
chanical (solid line), semiclassical (coarse-dashed line), and classical (fine-dashed
line) cases. The parameter values are K = 5.0, A = 0.3, and for the guantum mecha-
nical and the semiclassical cases % = 0.01/2s .

In this section we present some numerical regults [1&} for the quantum map (2.11)
for the parameter values K = 5.0, X = 0.3, # = 0.01/2x (We recall that# is given
in units in which the moment of inertia of the rotator and the kicking period are
unity). The initial state chosen in the numerical work is slways the zero angular
momentun eigenstate g = lo><ol . For the value of fi chosen one expects to reach
a steady state after a relaxation time an = (1“;L)‘1 , 1.6, after only a few time
steps. In fig. la we plot the averaged kinetic energy of the rotator as a function
of the discrete time n for the classical map (fine~dashed line), the semi-classical
map neglecting third order cumulants (coarse-dashed line) and the full quantum map
(full line). A steady state is apparently reached after a relaxation time which is

not influenced by quantum effects. There are quantum effects visible in the size of



23

the averaged kinetic energy, but it can also be seen that these effects are very
well approximated by the semi-classical noisy map. In fig. lb we also show the full
Probability distribution of angular momentum in the steady state in the three cases.
Only the region p>0 is shown because of symmetry, Again quite drastic quantum effects
are visible, but they are well described by the noisy map. We now return to results
for the full phase-space distribution in the steady state. In figs. 2a-d various
Phase-space functions are plotted against q for fixed values of p over a base-line
whose vertical position gives the respective value of p. This method was found to
Produce quite clear pictures of the phase-space functions. In fig. 2e the exact
Wigner distribution VV“Yq)is plotted in this way, fig. 2b gives the corresponding se-
mi-classical result W(p,q) , fig. 2a shows the classical phase-space distribution.
The (in principle infinitely} nested structure of the classical strange attractor is
eeen to be smoothened by the quantum noise already in the semi-classical distri-
bution. The full Wigner function W{p,q) is seen to differ from W(p,q) by the ob-
Vicus ’kinematical’ effects of quantization {(only p=ah{ with integer { occurs in
the Wigner function) and doubled periodicity described by eq. (2.19). In additien,
however, wavy patterns are seen to oceur in W(p,q) (making W(p,q) non positive-
definite) which are not at all present in the semi-classical result.These patterns
are therefore produced by higher order cumulants in the ’quasi-stochastic’ map. Fi-

nally, in fig. 2d we show the corresponding result for the positive &-function [21]

Qlp,g) =<alglo), (3.1)
where |> is a coherent state with amplitude o= *}/24’1 ( cf(mod l)+ip) is re-
lated to W(pq) by

4H 2,/ '2!0“_‘1";2 ;o
Qlpa) = % $d'e'e W(p;q7) (3.2)

and appears correspondingly broadened. In contrast to W(p,q), the function G(p,q) is,
in principle, observable. It is the best locally resolved measurable phase-space dis-
tribution in quantum theory and therefore the best one can do, in principle, to
obgserve local features of the Wigner distribution. We notice that all wavy features
of the Wigner distribution have disappeared in @ . In fact the substitution of Q@(Bq)
for W(pq) produces a practically indistinguishable result. We see therefore that
Observable results in the present case are well reproduced by the semi-classical

approximation. We can expect this to be true whenever the condition

Vi ot /iy <1 (3.3)

is satisfied for the cumulants in egs. (2.17), (2.18). This condition is well satis-

fied for the parameter values chosen here.
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Fig. 2

Phase space distribution functions in the stationary state. Parts (c,d) results
of quantum mechanical calculations, parts (a,b) results of iterations of the clas-
sical map, in (b) with quantum noise simulated in the semiclassical approximation.
Part (d) is a coarse-grained version of part (c).

The parameter values are K = 5.0, 2 = 0.3, ¥ = 0.01/22 (b-d), $ = 0(a).

The distribution functions are point symmetric with respect to the origin and pe-
riodic in phase; only the upper half of one period is shown.
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4. Localization and Delacalization

As has been mentioned in the introduction, the Floquet {quasi-energy) states of the
Conservative quantum map determined from eq. (2.5) localized in the action variable
for typical values of h . Floquet states W,> which are neighboured in the action va-
Tiable within twice the localization lengthL have finite overlap and their eigen-
phases repel each other. Hence their mean spacing of eigenvalues can be estimated as
6“‘432«?{/2[_ . For times n<n¥= 227 /bw, the uncertainty principle tells us that the
Quantization of Floquet states cannot yet be resolved in the time evolution of an ini-
tially localized wave packet. Hence, there is classical chaotic diffusion of the action

Variable for times m<n* and one estimates from eq. (1.2) (if p,=0)
<P:)=1(-‘5—)2n (4.1)
2 \2x : ‘

Une can use this to estimate the localization length L. of the conservative map in a
self-consistent fashion as the momentum scalep‘==2mﬁl.where the classical diffusion
has to break down [ZZJ. Hence

(me_)lg%(%r)znh%(%)z% mL(z%)z. (4.2)
and one concludes that
L nt/2= ({;—ﬁ)z (4.3)

as an estimate of order of magnitudes. How is this simple picture changed by dissi-
pation [}}], [iﬁ]? New important time scales are introduced by dissipation, namely
the classical relaxation time to the steady state n‘=(1-)J'q and the mean life;time
of a quasi-energy state |Uy> due to dissipation ny= [(1-2) Quallphiuad /2x00 1

The latter 1ife-time can be computed from the master eguation. If we insert in the

latter the momentum scale2xhL we obtain the time scale

I B (T Y
MetEnL T aaKe (4.4)

On which incoberent transitions due to dissipation occur in a wavepacket initially

started at § = lod<ol and propagating under the dissipative map. If n. < n* ,
i.e.,

1 (enth ¥

1-a >E K * (4.5)

incoherent transitions dominate over coherent propagation and we cannot expect to see

even transient signatures of localization. Another way of stating the condition (4.5)
is
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Buw, > o (4.6)

where §w, and 2x/n, are, respectively, the average level spacing and level widths
of Floquet states near p=0 within a distance L. . Condition (4.5) was satisfied for
the parameter values chosen in the preceding section. We-now define the parameter
domain of ’weak dissipation® by the condition

-%fi <n, {weak dissipation) . (4.7)
o

The disruption of coherence by incoherent processes then does not occur sufficiently
frequently to inhibit localization altogether, but incoherent transitions now move
the wavepacket diffusively from one localized state of size L. to the next. After

such incoherent transitions the action variable therefore spreads diffusively accor-

ding to

Cap?y

Lap™2 2 (4.8)
(Zrb)t L°N.

The time-scale ON/dn for incoherent processes also depends linearly on the momen-
tum scale (cf. the expression for n, given above) and we can therefore estimate self-

consistently

9N  1-A < (1- _
P —E;EW/(APt) (1 )..)L"/I'TJ.| , (4.9)

which gives

1

~ A 4.10
N—G'ﬂ 3 <‘ )

e

and with eg. (4.8)

E 3
{ap®) y(K )8 (1-2) 2. (4.11)

(2xh)  \xth T
Fq. (4.11) remains valid only as long as the widths of the Floquet states involved
(which grow proportionally with the scale of angular momentum) are small compared
to their average level spacing bw, =22¢/2L. The angular momentum scale in the steady

-1
state can then be estimated from eq. (4.11) inserting n, = (1~ 1) for m . Then we
find ¢
~ 1 K ) 2 (4.12)
2y~ K .
<dp ) ¢ (?ﬂlh (2nt)",

and, self-consistently, the condition

(4.13)
(r2< (gg2)°
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for the validity of eq. (4.11) until the steady state is reached. We use eq. (4.13)
88 a definition of the parameter regime of very weak dissipation. The condition
(4.13) Just guarantees that the angular momentum scale (4.12) in the quantum steady
state is smaller than the corresponding scale
<5p1> o~ .Lz. _1_

TexZ 1-a ° (4.14)
in the classical steady state. In other words eq. (4.13) ensures that effects of
localization are visible even in the steady state. If eq. (4.7) but not eq. (4.13) is
satisfied, eq. {4.11) must break down before the steady state is reached. The break-

down occurs once the angular momentum scale [pl is reached where the widths and

@verage spacings of guasi-energy levels are comparable, which yields

Ipl = [2(1-0)(k/4x0)* ] (200h)
6q-1 (4.15)
Ny = [(1-2)* (k75" h)" ]

for the angular momentum scale and the time scale, respectively, where the transi-
tion oceurs. For longer times and larger angular momenta the system returns to
tlassical diffusion. Therefore, in the region of weak dissipation (but not very weak
dissipation) localization is a transient phenomenon only, whose signature is the n -
dependence of eq. (4.11).

Let us finally consider the preliminary numerical evidence for the various re-

gimes of dissipation which we have obtained so far.

In figs. 3,4 we show results for the long-time development of the mean rotational
energy {p*/2 > of the rotator for a kick strength K = 10.0 far above K. = 1, with
= 0.15¥E+1)/n (the golden mean factor serving to aveid the influence of gquantum
Fesonances). For these parameter values, the conservative case {dashed line in figs.
3a,4a)is characterized by an initial diffusive increase of the energy with an esti-
mated rate <p}/2) = 0.6m and an onset of localization after n*= 86 time steps,
1eading to a quasi-periodic behavior with the energy fluctuating around {p%/2)=13.6.
There is reasonable agreement of order of magnitudes with the respective numerical
values p¥=~ 40, <p2/2>x04n, {p*/23= 20 .

The full line in fig. 3a corresponds to a dissipation rate 1-2= 5-10_6 in the re-
gime of extremely weak dissipation O< 1-A £ 1.3-10"% . We observe a slow increase
of the mean energy compared to the conservative case, the fluctuations still follow-
ing closely those in the conservative system. Moreover, we indeed find a nearly qua-
dratic time dependence for the difference of the two energies. In the log-log plot

fig. 3h the actual exponent is compared with the theoretically estimated value 2
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Fig. 3

Time evolution of the total energy over the first 2000 iterations (a), shown for
extremely weak dissipation (solid line) and for the conservative case (dashed
line), and difference of the two functions in log-log representation (b). The
straight line in part (b) has the slope 2, corresponding to a quadratic time de-
pendence. 6

The parameter values are K = 10.0, 2 = 1.0-5-10"" {damped case), A = 1.0 (conser-
vative case), # = 0.03863.
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Time evolution of the total energy over the first 1000 iterations (a), shown for
weak dissipation (solid line) and for the conservative case (dashed line), and re-
duced angular momentum distribution (b), shown for the quantum mechanical (solid
line) and classical (dashed line) cases with weak dissipation as in part (a).

The parameter values are K = 10.0, A = 1-1-10"% (a, damped case, and b}, & =1.0
(a, conservative case), # = 0.03863 (a and b, quantum mechanical case), t = 0

(b, classical case).
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(straight line). The absolute value of the increase rate <p2/2 > =1.10 % iz in
reasonable agreement with the estimated value <p2/2> = 0.6-10*n?. With 1-2<10-10"F,
the result shown in fig. 4a (full line) corresponds to the regime of weak dissipation
(1.3-10-55 1-A€ 2.7« lD_a). In this case, the onset of localization still remains
visible. Disruptions of coherence {whose time scale is n =230 here), however, domi-
nate the behavior of the system soon thereafter. The increase of energy remains far
below the classically expected rate, which we attribute to the fact that the average
{p*/2) receives contributions from angular momentum scales both in the localized
region at smalllpland the delocalized region at largelpl; in any case there is no
more evidence for a quadratic time dependence. In fig. 4a the fluctuations cease

to be correlated with those of the conservative gquantum system after = 1000 itera-

tions, which 1s consistent with the estimated value of n, = 1300.

In fig. 4b we present the distribution over angular momentum obtained after 1000
time-steps for the same parameter values as in fig. 4a. For small angular momenta,
where localization of quasi-energy states is efficient and diffusion is prohibited
the distribution is different in form and less smoath than for large angular momenta
where localization of quasi-energy states is destroyed and diffusion occurs. The mo-
mentum scale estimated from (4.15) is Ipl = 28 and somewhat larger than but of the
same order of magnitude as the momentum scale Ipl = 10 where the distribution changes

its form.

In the experiments of figs. 3,4 the increasing angular momentum scale prevented us

from following the system into the steady state, which should be reached after
ng > 2-105 and after ny l'lDa iterations for the cases of extremely weak and

weak dissipation, respectively.

In summary, the numerical results demonstrate the existence of the various regimes
of dissipation strength ¥= {4-2) and locslization or delocalization which have
emerged from our qualitative analytical estimates. furthermore, these estimates are
found to give useful orders of magnitude which help to interpret the numerical re-

sults.
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COHERENCES AND CORRELATIONS IN CHAOTIC OPTICAL SIGNALS

N.B. Abraham, A.M. Albano, B. Das and M.F.H. Tarroja
Department of Physics, Bryn Mawr College
Bryn Mawr, PA 19010 Usa

Although it is common to analyze fluctuating optical signals on a
statistical basis and to use correlation functions and spectral analysis to
find bandwidths, pulse shapes and short term memory features, it is now
possible to perform certain specific numerical studies which can uncover
characteristics of the causes of the fluctuations. That is, by analysis of
the time series of the signals, we can distinguish differences between
broadband fluctuations caused by deterministic effects and those caused by
stochastic processes. We are very familiar with the notion that many
random processes cause Gaussian amplitude fluctuations and the
corresponding negative exponential intensity probability distribution
function. Among such processes is spontaneous emission from a large and
dilute collection of incoherently excited atoms. In contrast,
semiclassical laser light can be describéd by a delta function distribution
of intensity and only a slow phase drift for the complex electric field
amplitude.

Recently simple algorithms have been offered which aid in determining
whether the broadband fluctuations of a signal have their origin in
stochastic or deterministic processes [1}. Deterministic processes can be
easily identified if they generate constant or periodic signals. However,
when the deterministic process generates seemingly random fluctuations,
then the situation may well be that which is now called "deterministic
chaos™, a particular form of evolution in the phase space of the system.
Chaotic behavior often generates broadband spectra that are essentially
indistinguishable from those caused by stochastic noise. In particular for
lasers, chaotic dynamics can cause the laser to have an optical power
spectrum which closely resembles the spectrum of spontaneous emission.

Work in the last five years has identified methods of analysis of
seemingly random signals which can distinguish some types of chaotic

behavior from stochastic behavior. The basic method is to take a digitized
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record of one fluctuating variable, use it to reconstruct a topological
equivalent to the evolution of the system in its variable space, and then
to measure characteristics of the set of points forming the solution. For
low dimensional chaotic systems, the solution set forms a low dimensional
fractal of dimension larger than two. By careful analysis of the dimension
of the reconstructed attracting set, one can find fractional values which
are clearly different from, and smaller than, the integer values that would

be characteristic of stochastic noise f£illing of a variable space of the

same number of dimensions.
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Figure 1: Two examples of experimentally measured intensity power spectra

for a spontaneocusly pulsing, single mode, xenon-~helium (inhomogeneously
broadened) laser [1].
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Figure 2: Slopes of the Correlation integral for different embedding
dimensions for digitized intensity time series corresponding to the power
spectra shown in Fig. 1: dimensions of order one for the periodic signal
and of order 2.2 for the guasiperiodic signal with broadband features [1].
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These techniques have been applied to the analysis of laser signals and
there is evidence that broadband features of the optical power spectrum are
in certain cases representative of chaotic rather than stochastic behavior.
An example is shown in Figures 1 and 2, where we show the intensity power
spectra from experimental measurements and the slopes of correlation sums
for the Grassberger-Procaccia method of calculating the correlation

dimension [see Refs. 1 and 21].

The plateau regions indicate that a fractal
structure exists over a certain length scale in the attracting set and can
be taken as strong evidence for chaos. Nearly the same values for the

dimension were found when we analyzed the numerically generated time-series
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Figure 3:
for the Lorenz-Haken model in the chaotic regime.
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that represent solutions for the intensity output of an inhomogeneously
broadened laser [1].

We have more recently inquired about other properties of a chaotic
signal in order to probe the possibility that the measurement of coherence
or correlation functions might reveal chaotic dynamics either more clearly
or with greater computational ease.

As examples of work of this nature, we show first the results for the
Lorenz~Haken model for a single mode, homogeneously broadened laser in
resonance [3]. In Figure 3, we show examples of the characteristic time
evolution of the field amplitude and the intensity in the chaotic region.

In Figure 4, we show the corresponding power spectra. Note that the

amplitude spectrum is smoothly broadband while the intensity spectrum shows

i (a)
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Figure 4: Power spectra corresponding to the time series in Figure 3.
Vertical scale is 10 dB per division.
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distinct peaks, over 30 4B above the broadband noise as a result of the
elimination of the phase noise part of the amplitude fluctuations. The low
frequency portion of the power spectrum of the intensity is also
significantly reduced. As both signals are derived from the same chaotic
dynamics, we see that the degree of chaos is not equally revealed by
different variables or by nonlinear functions of those variables.

Similar results have been found for the model of an inhomogeneously
broadened laser which we have used to successfully model experimental

measurements {4]1. The major distinction is that in this case, chaos is

0.0

{b)

|
0.0 i\)bb!“dl” lld } Umu‘.“ u‘ul,}}lm H J..-JJJJ'. )

Figure 5: Electric field amplitude (a) and intensity (b) pulsations from

numerical integration of a model for an inhomogeneously broadened ring
laser.
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Amplitude (a) and Power Spectra (b) for the signals shown in
Vertical scale is 10 dB per division.

found very close to the threshold for laser action.

Some of the information contained in the contrast between the intensity

and amplitude spectra can be useful in interpreting experimental data.

We

recognize that chaotic evolution may cause a large amount of broadband

phase noise while the effect on the intensity is predominantly periodic

modulation with a lesser amount of chaotic fluctuations.

I1f we return to

some experimental data of several years ago for a Fabry-Perot He-Ne laser

(similarly inhomogenecusly broadened
we can compare this information with
be obtained because of the intrinsic
(in contrast to the noisiness of the

display several samples of our He-Ne

on the 3.39 micron line and unstable},
the high-resolution spectra that could
quiescence of the He-Ne gas discharge

He-¥e discharge). In Figure 7 we

data [5] which show the kind of

intensity power spectra we find for the model calculations for

fully~developed chaos,

20dB above & broadbhand portion of the spectrum.

Here also, the periodic modulation is more than

The broadband spectrum is

peaked at the frequency of the periodic modulation and there is less

broadband noise near zero frequency.

This suggests to us that we should

repeat the He-Ne experiments to obtain clear heterodyne spectra which

should reflect the non-periodic and broadband nature of the amplitude

spectrum obtained from the models.
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Figure 7: Intensity power spectra for a chaotically pulsing He-Ne laser
after [5].

Our alternative method of analysis is to calculate correlation
functions. The simplest correlation function, the autocorrelation
function, is calculated from the data (from which the mean has been

subtracted) by the relation:
C11(T) = <A(t)A(t+T)>/<A(t)?> , (1)

which is related by the Wiener-Khintchine Theorem to the power spectrum of
A{t) by a simple Fourier Transform.

Higher order correlation functions can be calculated. However, they
are then functions of multiple temporal coordinates as different time
delays can be used in the different factors. We have found that additional
and helpful information already appears in the simplest form of the

third-order correlation function
Cpy (1) = <A(t)A(t)A(t+1)>/ (<A(£)2»)3/2 | (2)

Results for the Lorenz-Haken model are shown in Figs. 8 and 9. Figure 8
gives the autocorrelation for the signals shown in Figs. 3 and 4, and Fig.

9 gives the simple third-order correlation function for the same signals.



39

1.0
i 011(t) for the amplitude
'k
\“' s 2 i
oo I s.m%v\dw\.—nmﬁﬁm‘\ S N S N JV‘W\IWV‘V’\ A
~1.0 s s . " L ) . . , .
1.0 F

L C11(t) for the intensity

" \“J | \l{t s e

time

-1.0 . o N . A ; N . ;

Figure 8: Autocorrelation function of the chaotic signals from the
Lorenz-Haken model shown in Figs 3 and 4.

The third order correlation function for the amplitude shows little
information because the symmetry of the signal about zero amplitude gives a
null result for all delays. The thixd-order function for the intensity
shows considerably more information with two characteristic decay times for
the largest part of the signal. One is of the order of the period of the

dominant intensity pulsation frequency (indicated by the rapid decay from
Cy1(0) = 1.0 to about C331(t) = 0.5), while the other is of order of ten

periods of the pulsation frequency. Other longer term correlations are

also visible after more than 100 periods of the fundamental intensity
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Figure 9: Third-order correlation function for the chaotic signals from
the Lorenz-Haken model.

pulsation frequency.

Similarly distinctive features have been found for experimental data
from the unstable He-Xe laser and they differ from characteristics we find
in the fluctuations of amplified spontaneous emission from a heavily
saturated source.

A major difference found here is that the ASE shows a single peak at
zero delay time for the third order correlation function, which indicates
that there is no significant memory or characteristic evolution after each

pulse. Observing the intensity pulsations in real time we notice that it
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Figure 10: Third-order intensity correlation function for experimental

data from a He-Xe ring laser as described in [4]. (Pata record of 500 pts.)
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Figure 11: Third-order intensity correlation function for experimental
data from a heavily saturated source of amplified spontaneous emission
using the same He-Xe 3.51 micron transition used in the laser studies
{discharge length: 2.0 m; Pressure: 193 mTorr Xe, 4.0 Torr He). Data
stream of 500 points. The function is inverted because of an inverting
amplifier in the experimental setup. The signal analyzed here is raw data
including amplifier noise of about 5%.

is a common occurence that the intensity remains near zero after a large
pulse. We have also found that the fluctuations in copropagating or
counterpropagating, orthogonally polarized, beams in the ASE source are
anticorrelated with the strong pulsations in this beam {6]. For this

preliminary data we believe that there is no significance to the function
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shown in Fig. 11 other than the large peak near zero delay time. The
fluctuating baseline for longer times is presumed to arise from the very
short data record (see Figs. 13 for results for longer data records).

While it is common to presume that amplified spontanecus emission is
stochastic in origin and output, we have checked this for our heavily
saturated source and confirmed that dimensionality tests are unable to
discern a dimension {(and thus unable to discern the existence) for an
attractor [1]. An improved algorithm for projecting the embedded
{reconstructed) attractor onto its principal axes, using the singular value
decomposition techniques espoused by Broomhead and King, was also applied
to the data and again a dimension or characteristic structure for an
attractor failed to emerge [7]. We might have expected some deterministic
features caused by the evolution of intense pulses in a superflourescent
manner .

Thus the ASE represents an optical signal which has a broadband
spectrum equivalent to that of a chaotic laser, yet the origin of the
fluctuations in the two cases is quite different. 1In fact, this is
immediately evident in the intensity power spectra. Unlike the chaotic
laser which has a broadband amplitude spectrum associated with a
predominantly periodic intensity pulsation, the ASE reveals no underlying
dynamical structure as its intensity power spectrum is as smoothly
broadband as the amplitude spectrum. The intensity power spectrum in this
case is the natural homodyne convolution of amplitude spectrum with itself
as would be expected for a stochastic source. We recall that the periodic
features of the intensity of the chaotic laser signal, which could not be
predicted by convolution of the amplitude power spectrum, indicate that
this is not similarly stochastic.

Other stochastic features of the ASE signal are revealed by measuring
the intensity probability distribution function which is shown in Figure

12, and the higher order correlation functions defined by

<(A(E))D (A (L+T))M>/ (<A (£) 2>) (ntm) /2 (3a)

Inm (D
and
Com (T) = gnm(T) = gpmp{=°) {3b)

which are shown in Figure 13. Assuming that the amplifier and detector
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noise is independent of the signal and is added to the photocurrent Signal,

we have subtracted away the corresponding cumulants of the noise determined
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Figure 12:

Operating Conditions:
Discharge length: 3.0 m
Pressure: 192 mTorr Xe
2.0 Torr He

Current 5.5 mA

Intensity probability distribution function for heavily

saturated amplified spontaneous emission.
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by measuring the data record with the optical signal blocked.

Here we see another indication of the lack of deterministic
correlations in that the correlation functions die out gquickly without long
term ringing. The second and third order correlation functions do show a
secondary peak at about 70 ns, coincidentally close to the characteristic
duration of the anticorrelation effects seen earlier [6]. However, as this
data is preliminary, we are not yet certain of the reliability of this
feature and we will be investigating it further. The higher order
correlation functions are narrower in time, indicating that the pulses of
greater height are also narrower as we could infer from direct observation
of the intensity time series.

Though not shown here, the intensity and amplitude spectra are both

broadband and without peaks within the resolution limits of our rf spectrum

analyzers.

CONCLUSIONS

It appears that intensity power spectra, intensity correlation
functions, and heterodyne spectra (if available) can be used together to
build a strong case for stochastic or deterministically chaotic origins for
fluctuating optical signals. When the intensity power spectrum contains
peaks that are not predicted by the differences between peaks in the
amplitude spectrum, it is likely that there is deterministic evolution
causing the signal. When, instead, the intensity power spectrum is simply
the homodyne convolution of the amplitude spectrum and when the spectra and
higher order correlation functions show no peaks other than the ones near
zero, then it is likely that the signal has stochastic origins.

There is clear evidence in this dynamical single-mode laser chaos that
the phase of the field is a “key player"” in the chaotic motion. However,
all of the variables are dynamically coupled and at least three must be
actively involved to produce the chaos. 1In the case of the Lorenz-Haken
model, we have taken the laser in resonance, in which case the field is one
of only three real variables in the system. Clearly a broadband spectrum
of frequencies is involved in the amplitude chaos by a combination of
switching sign and pulsing magnitude. It is rather surprising that the

modulation of the intensity is so relatively periodic. The projection of
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the chaotic attractor onto an intensity phase space shows relatively weak
blurring due to the chaos. One can partially understand the chaos as
predominantly frequency modulation while the intensity modulation remains
predominantly periodic. Nevertheless it is, of necessity, a matter of
degree. The chaotic modulation must be present in all three of the
variables.

The distinction between phase and intensity is all the more puzzling
because the field wvariable in this case is real. It would be easier to
understand if the field amplitude were complex, as it could then be
described by two real variables {(a normative amplitude and a phase). The
phase noise we see corresponds to the hopping between the two basins of
attraction in the regions of positive and negative field amplitude.

"Phnase" in this case means the sign of the electric field and it switches
telegraphically in a chaotic manner.

We are not certain how the emphasis on chaotic switching relates to the
different kind of behavior when the laser is detuned (requiring five
equations in a generalized Lorenz-Haken model). Both experimentalists and
theoreticians have pointed out the the detuned laser is much more likely to
exhibit periodic rather than chaotic pulsations.

The importance of phase chaos is not universal in optical systems as in
many models and experiments, such as for the modulated laser discussed in
this volume by Tredicce, only the intensity is involved {and not the field
amplitude} as one of the dynamical variables.

Continuing studies are directed at improving the distinctions that can
be made and testing other correlation and coherence measures for their
relative aid in discerning features that are characteristic of stochastic

or deterministic causes of fluctuations.
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Department of Physics
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In recent years there has developed a rapidly growing interest in the manifestly quantum or
nonclassical features of the electromagnetic field. From the perspective of quantum optics, such
nonclassical features are of great intrinsic interest; however, a widening audience is now being
attracted to problems in this area because of potential applications to measurement science, to optical
communication, and to atomic spectroscopy. Squeezed states of the electromagnetic field are one
example of quantum states that are the subject of intense activity(1), with several observations of
squeezing now having been reported(2-7). In at least one case, a sufficient degree of squeezing to
warrant serious attention to possible application has been demonstrated(4). Squeezing refers to the
phase dependent redistribution of the quantum fluctuations of the field such that the variance in one of
two orthogonal quadrature operators drops below the level of fluctuations set by the vacuum state of
the field (the zero-point level).

While a diverse set of processes has been identified for squeezed state generation(8), it has
proven to be somewhat difficult for a variety of scientific and technological reasons to find
experimental systems that actually fulfill the potential indicated by many model calculations. In this
paper we wish to describe a new regime for squeezed state generation involving a collection of two-
level atoms coupled to a single mode of a high finesse resonator. We demonstrate both theoretically
and experimentally that significant degrees of squeezing can be achieved by employing the normal-
mode structure of this coupled system in a domain in which the oscillatory exchange of excitation
between the cavity mode and the atoms in the cavity provides the requisite phase sensitive amplification
and deamplification of quantum fluctuations. With few exceptions (9, 11), previous investigations of
this system have focused on the “good-cavity” limit in which the atomic variables have been

adiabatically eliminated and with them the very structure that we have identified(10, 12-15).
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To gain qualitative insight into the nature of the processes responsible for squeezed state
generation in this new regime, we begin with an analysis of the interaction of a collection of N two-
level atoms with a single mode of a high finesse interferometer. The model Hamiltonian H for this

system has been extensively studied in quantum optics and is taken to be of the form(16,17)

H=Hy+H, +H,,
Hp=(hw/2)J, + ho, ata+hgli] at +He.] M

The coherent coupling of the atomic polarization to the cavity field is described by Hg. {3, ..} are
collective atomic operators for the N atoms of transition frequency , , and {a,at* } are the annihilation
and creation operators for the single cavity mode of resonant frequency .. The atoms and field mode

are coupled through an assumed dipole interaction with coupling coefficient

g = ( opu22megv)Le,

Decay of the atomic inversion is assumed to be purely radiative at rate 'y , while the atomic polarization

decay rate is designated by ). Both decay processes are described by H,. The field amplitude
decays at arate K via coupling at the cavity mirrors to a set of continuum input-output modes as
described by H, ,which also includes the possibility of excitation by an external field of frequency o, .

While an incredibly diverse set of phenomena is described by Eq. (1), we wish to focus on a

feature of this Hamiltonian that is well known within the context of cavity QED with Rydberg
atoms(18-21) but which is often overlooked in optical physics (22). For ®, = ®_ and for a weak

intracavity field x<<1, with x=(<a* a>/ny }y}no =y y/4g?, the atomic system can be replaced by an
atomic oscillator obeying a boson algebra [b,b+]=1(11, 21). In this case Hy can be rewritten as a

sum of two uncoupled harmonic oscillations,

Hg =t(w + g¥N)CT,C, + - giN)Ct €, 2

where the normal mode operators Cy have been introduced, Cy =1/¥2(a + ib), with eigenvalues
Ay=i( ©+ g¥N). This lifting of the degeneracy of the first excited state of the atom-field system has
been termed a "vacuum-field Rabi splitting”(19) and is a result of the mutual coupling of the two

systems of N atoms and cavity mode. If decay is included, Carmichael has shown more generally that
Ay=1/2( ¥2+x) £[1/4 (/2 - k)2 -g2 N]12 =B * ju, where we have transformed to a rotating frame of

frequency ® and have assumed radiative damping, 2y = ¥(11). We see that A, contains an
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imaginary part only for l/2|'y/2-1c|<g\fﬁ . That is, since a and b are independently coupled to separate
reservoirs, a periodic exchange of excitation occurs only if the decay rates of the two oscillators are
not too dissimiliar. It is this exchange that is crucial to our analysis. (In experiments reported
clsewhere (23), we have observed this oscillatory exchange in transient decay.)

For describing squeezed state generation, one must extend the above discussion to include
nonzero detunings and larger intracavity fields. We have carried out such an analysis by linearization
about the steady state of the Maxwell-Bloch equations that resuit from Eq (1). For the sake of brevity,
in the remainder of our theoretical discussion we restrict attention to the case 2y | =Y. The eigenvalue
structure is found to consist of five eigenvalues, which in general comprise a set of one real value and
two pairs of complex conjugates corresponding to the eigenfunctions formed from the atomic

inversion, atomic polarization, and cavity field. Figure 1 shows the dependence of the imaginary parts

(01,1, ) of these eigenvalues on intracavity field x for a fixed value of the atomic cooperativity
parameter C=Ng2/xy. In Fig.1a the cavity detuning 6 = (&, - ® )/x and atomic detuning A = (@, -
(y )y are both set to zero, while in Fig.1b 6 =-0.65 and A =10.7. The limiting value of (v, v, )
as x—0 in Fig. 1a is precisely the vacuum-field Rabi splitting described above, generalized to include
nonzero detunings in Fig. Ib. While for x—0 the normal mode operators corresponding to these

eigenvalues are roughly equal admixtures of cavity and atomic operators, for x>>1 we see two rather
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Figure 1--Imaginary parts (v, v,) of the eigenvalues resulting from a linearization of the Maxwell-
Bloch equations versus intracavity field x. The frequency v is in units of y (a) atomic detuning A = 0 =

cavity detuning 6 (b) atomic detuning A = 10.7, cavity detuning § = -0.65, In both plots the ratio y of

cavity loss to atomic decay rate is 11.8 and cooperativity parameter C = 20. In (a) the region x = 1.05,
6.07 is bistable while in (b) no bistability is present.
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disparate frequencies in Fig. 1, which are just the usual free-space Rabi frequency 82= x2 + 4A%(with
damping given by ¥) and the cavity ringing frequency 6 (with damping given by ), Thus in the
limit x>>(1,A), the eigenvalue problem decouples with two sets of eigenfunctions of character
determined predominantly by atomic or cavity properties. In our work we concentrate on the region
around the crossing shown near x=8 in Fig.1b. At this point the eigenvalue spectrum results in a
phase sensitivity to fluctuations through an eigenmode structure that conspires cooperatively to
produce squeezing. We note that this approach is quite different from the usual perspective in which
the atomic variables are adiabatically eliminated by taking y =x /¥ — 0(12,14,15) and for which the
weak field splitting shown in Fig.1 is lost.

Of course to translate this qualitative discussion into quantitative predictions for squeczed state
generation, a detailed analysis beginning with the Hamiltonian Eq. (1) must be carried out. Given the
existing literature in which a generalized Fokker-Planck equation in the positive-P representation has
been derived for this problem(24), it is straightforward to arrive at an equation for the spectral density
A($,Q) describing the fluctuations of the quadrature amplitude y(t,d )=a(t)e-¢ +a+ (t)ei* of the
intracavity field. Complexity in the current problem arises from keeping the full set of five dynamical
variables without adiabatic elimination. Squeezing of the field emitted through the output mirror of the
cavity is described by the spectrum of squeezing S( 9,22 }=2xA($,2) (25).

Our results for the spectrum of squeezing § are displayed in Fig. 2. S(¢,Q ) is defined such
that S=0 corresponds to the vacuum state while S=-1 corresponds to perfect squeezing of one
quadrature amplitude. Note that the frequency  at which optimum squeezing occurs in curve (i) is
approximately given by the frequency of the crossing point in Fig.1b; that is, optimum squeezing
occurs near the frequency associated with the vacuum-field Rabi splitting. This behavior is not
peculiar to Fig. Ib and 2(i), but it is rather a common feature found in our numerical studies over quite
large regions of the parameter space. Another general feature that emerges from our analysis is that the
value of the intracavity field x at which optimum squeezing occurs is such that x ~ A ; that is, the field
needs to be increased to the point of the onset of saturation. In Fig. 2 the phase ¢ of the output
quadrature amplitude examined has been optimized at each value of £ to maximize the squeezing. We
denote the resultant spectrum as S_(Q); the spectrum of squeezing of the orthogonal quadrature

amplitude with ¢ increased by 90° is designated S, (Q ) and is not displayed.
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i (i {1 7

—40 —20 0 20 40

Figure 2--Spectrum of squeezing S_ versus offset frequency £ in units of y, with §_ =0
corresponding to the vacuum state. The ratio p of cavity loss to atomic decay rate is 11.8 (i)
Cooperativity parameter C=20,x =12.1,A=10.7, = -0.65 (ii) C = 100, x = 17.7, A= 18.2,
6 =-1.2. Note that at each Q the phase ¢ is varied to minimize S_,

A more global picture of the nature of squeezing in this system is obtained from Fig. 3, which
shows the dependence of S_ on atomic cooperativity pararaeter C. In Fig. 3 each point results from a
search for optimum squeezing over all ( A,8, £2,x) for given values of (C,)t). This search is carried
out in a four-dimensional space with the value of §_ at any given point in the space requiring the
inversion of five-dimensional matrices. Note that substantial degrees of squeezing are predicted for
relatively modest values of (C, x), relative to earlier treatments of squeezed state generation with two-
level atoms. In addition to the results presented in Fig.1-3, we have also constructed “isosqueezing”
contours that indicate that squeezing in this new regime persists over relatively broad regions of the
parameter space so that in practice the predicted effects should be reasonably robust with respect to
deviations between actual experiment and the model calculation,

These results from our numerical evaluation of the spectrum of squeezing together with an
analysis of the eigenvalue spectrum leads to the following simple picture for squeezed state generation
via the normal mode splitting of the coupled atom-field system. (1)The splitting in the eigenvalue
Structure (U, , Vo) must be large as compared to the associated width of the spectral components,
which for modest values of |t and A is a condition that g\fN_ >>(%,¥). (2) The cavity damping rate «

must be much larger than the atomic decay rate 'y so that the dominant decay route of the spectral
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Figure 3--Dependence of the minimum value of the spectrum of squeezing S_ on atomic cooperativity

C for fixed . Note that at any point on a curve the values of (A, 8, €2, x) have been chosen for
optimum squeezing,.

features of A(£) is through the cavity output coupler, it >>1(Note that conditions (1) and (2) imply
C>>p >> 1). (3) The intracavity field x should be increased to the point x ~ A, The first two
conditions are necessary for forming a coupling induced structure in the system's normal mode
spectrum appropriate for multiwave mixing. The third condition then ensures sufficient excitation for
nonlinear processes to occur among the low lying (N-atom)+{cavity mode} states. A clear description
of "four-wave mixing” in this system has been given by Varada et al.(26).

From the perspective of experimental design, the two critical considerations for the observation
of squeezed states via the mechanism that we have identified are the requirements for large splittings
v=gVN and large cavity damping ¥ as compared to the atomic rate 'y . Both conditions drive one to
small cavity volumes-the lower limit on cavity waist being set by transit broadening and the lower limit

on cavity length being the requirement of large optical density within the cavity. The cavity finesse is
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determined by a tradeoff between high finesse F for reaching large values of atomic cooperativity C
for a given maximum attainable intracavity optical density (C= lF/2x, with ol=small signal
absorption of the intracavity medium) and lower finesse for i >> 1 and for achieving a good
approximation to a single-sided cavity for given absorption and scatter losses in the mirror coatings.

A diagram of the experimental arrangement that we have employed to achieve these ends is

shown in Fig. 4. The cavity is formed by a pair of mirrors of radius of curvature 1m separated by

0.83mm. The transmission coefficients of the two mirrors are Ty =0.0075 and T, =0.0002. The
measured cavity finesse is F=680, while that inferred from the value of Ty is F{=840. Hence the ratio
of output loss through m1 to loss by all other avenues is given by ¢=F /F;:O.Sl, which implies 2 19%
reduction in squeezing as compared to an ideal single-ended cavity. The intracavity medium is
composed of optically prepumped beams of atomic sodium prepared in the (3 2S,,; ,F=2,mg =2) state
and excited with circularly polarized light to the (3 2P35,F=3,mp =3) state of the Dj line. Collimation
is provided by a 0.5mm aperture in the source oven and by a (.3mm aperture located 250mm
downstream from the oven and 15 mm upstream from the cavity waist. The maximum absorption ¢l
for this configuration is ¢t1=0.2, The fluorescence from the optical pumping beam together with the
recorded hysteresis cycle in absorptive optical bistability provide a measure of the intracavity density
and hence of C during the experiments. In separate measurements we have confirmed that to a good

approximation an arrangement such as the one outlined above can be viewed as a single-mode cavity

Specirum
Optical in Analyzer
Pumping
S
mz § mi D0, )
Signal
Py g -
Py iy
b1
Sodium Y}f‘q
Atomic N Locol
Beam Oscillator
Figure 4--Diagram of the essential elements of the experiment for generating and detecting squeezed

states.
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containing a collection of two-level atoms within the mean-field theory of optical bistability (27). The
excitation source in the experiments is a commercial frequency-stabilized cw dye laser pumped by an
argon-ion laser operating at 515nm.

Detection of the fluctuations in the quadrature amplitude of the signal beam emitted through the
mirror ml is accomplished with the balanced homodyne detector indicated in Fig.4(28). The
photodiodes are EGG-FFD-060 with the glass windows removed and with the reflection from the
diode surface collected and refocussed onto the photodiode resulting in a quantum efficiency 1=
0.85 + 0.04, The homodyne efficiency is measured to be approximately € = 0.93 + 0.07 for each
channel. Over the range 100-200MHz the “shot noise” associated with the SmA dc photocurrent
produced by the local oscillator exceeds the amplifier noise level by greater than 7dB. That the local
oscillator is indeed at the vacuum level and does not carry appreciable excess amplitude noise is
confirmed by a comparison of the noise levels observed when the two photocurrents iy and ij are
combined first with 0° and then with 180° phase shift. With the exception of coherent lines at
multiples of the 85MHz longitudinal mode spacing of the ion laser, we conclude that the local oscillator
fluctuations are within +1% of the vacuum level over the spectral range of interest in the current
¢xperiment, Furthermore, with the 180° phase shift actually employed in the squeezing
measurements, any excess local oscillator noise is reduced by greater than 15dB.

An example of our observation of noise reductions below the vacuum level is given in Fig. 5.
The figure displays the spectral density of photocurrent fluctuations, ©($,Q) on a logarithmic scale at
fixed frequency Q/2n =200MHz versus local phase ¢. The trace marked (i) is the vacuum level
obtained by blocking the signal beam. The trace labelled (ii) is with the signal beam present and clearly
exhibits noise reductions R_ below the vacuum level. Note that the periodicity of these reductions
with local oscillator phase ¢ is © rather than 21t , which is the periodicity of intensity fringes in the
system. Also note that noise reduction is achieved with incident laser power of only a few hundred
microwatts.  After correction is made for the nonzero noise level of the amplifier, the observed
reduction of -0.8dB below the shot noise level becomes -1.0dB. This figure represents a 20% noise
reduction below the level set by the vacuum state of the field at the signal port of the balanced
homodyne detector. We have also explored the dependence of the phase sensitive noise on offset
frequency €. In qualitative terms the observed noise reductions extend over the same broad regions
of frequency predicted by theory. For low frequency (€ < SOMHz), very large noise enhancements

R, above the vacuum level are observed, again in qualitative accord with theory.
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By including the propagation loss (1-T), detection quantum efficiency 1, heterodyne efficiency
€, and escape efficiency o from the cavity, we can relate the spectrum of squeezing S_ to the

observed noise reduction R_ (4,29,30)

R (Q)=1+0cTnesS (Q) 3

@(,Q)

+1.0dB

0 dB -

-1.0dBH

T l l tila

d)o ¢O+Tr q"’o+27r
Local Oscillator
Phase ¢

Figure 5--Spectral density @ (¢,£2) of fluctuations of the difference photocusrent (i-ip) versus local

oscillator phase ¢ at fixed analysis frequency /2x =200 MHz. (i) Signal input blocked to define
vacuum level (ii) Phase sensitive fluctuations with signal beam present drop below the vacuum level.

Operating conditions--C=17%22,4=13,A=35%05.

By separately measuring the quantities { 6, T, 1, €), we thus infer S_ from measurement of R_. In
the current arrangement, R_=0.80 corresponds to S_=-0.33, or to a 33% decrease in fluctuations
relative to the vacuum level before degradation by the various loss mechanisms associated with escape
and detection. Unfortunately a precise comparison with our theory is hampered at present by a lack of
guantitative knowledge of (x,0 ). However with the recorded values of (C=17+2, p = 13) Fig.3 leads
to an optimum prediction S_=-0.66, which is a degree of squeezing considerably larger than that
actually inferred from the data. Possible causes of this discrepancy include stray absorption due to

background sodium vapor in the vacuum chamber (2),a reduction in optical pumping efficiency at large
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atomic detunings (a single laser was employed for pumping of the F=2 «> F=3 transition), and
saturation of the detection electronics by the noise power contained in the broad detection bandwidth.
Another difficulty is that at present we do not have a well defined search procedure for optimization of
the squeezing on the five-dimensional space of experimental parameters. We are currently working to
eliminate each of these difficulties in future experiments, Of a more fundamental nature is the fact that
our theoretical analysis is carried out for a traveling-wave interferometer with plane waves while the
experiments are conducted in a standing-wave cavity with a Gaussian-transverse profile. While we are
reasonably confident that the deterministic physics is adequately described by a single-transverse-mode
theory (27) the precise role of a nonuniform cavity mode in altering the quantum fluctuations is yet to
be understood, although we have carried out a full quantum treatment in the good cavity limit (31).

In summary, we have identified both theoretically and experimentally a new regime for
squeezed state generation associated with the coupling of a collection of two-level atoms to an optical
cavity. The physical process responsible for the squeezing is a coupling-induced mode splitting in the
eigenvalue spectrum of the system, which for weak fields and zero detunings is just the vacuum-field
Rabi splitting. We have presented a theoretical analysis of the squeezing in this system based upon the
formalism developed in Ref.(24,25), and have predicted that large degrees of squeezing should be
attainable with rather modest values of atomic density and intracavity field. An experiment to confirm
these ideas has been carried out and noise reductions comparable to the best yet achieved in atomic
vapors {2) have been recorded. Improvements in our apparatus should lead to observed noise
reductions of greater than 50%. Apart from squeezed state studies, the investigation of 2 number of
problems in cavity QED with the optical system we have constructed should be of some interest.

This work was supported by the Venture Research Unit of BP and by the Office of Naval
Research. L.A. Orozeo is supported by an IBM Graduate Fellowship. We gratefully acknowledge

interactions with H.J, Carmichael and D.F. Walls which stimulated the current research program.
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QUANTUM NOISE REDUCTION VIA TWIN PHOTOM
BEAM GENERATION

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz and S. Reynaud
Laboratoire de Spectroscopie Hertzienne de 1'ENS (Laboratoire associé
au CNRS), Université Pierre et Marie Curie, F- 75252 PARIS CEDEX 05.

I. INTRODUCTION :

Considerable interest has been devoted lately toc sgueezed and non
classical states of the electromagnetic field. As opposed to the cocherent
states introduced by Glauber (1) they are characterized by different
quantum fluctuations on conjugate guantities (2) like either the two
quadrature components or the phase and amplitude of the electric field.
In principle the fluctuations on one of these quantities can be made
arbitrarily small. Such states have been recently produced experimental-
ly (3). Numerous ideas have been proposed to generate them in variocus

experimental schemes.

Most of these ideas rely on the use of a non linear Hamiltonian ac-
ting on the vacuum field, to transform it into a non classical state.
The Hamiltonian usually includes terms corresponding to the creation of
pairs of correlated photons indicating a close connection between pair

production and squeezing.

In this paper we shall focus our attention on parametric down conver-

sion, in which a non linear crystal pumped at frequency w, emits two

0]
signal fields at frequencies w, and w, such that w, = w, + w,. The corre-

lation between the "twin" photéLs prodiced by paramgtric1prociss has been
experimentally demonstrated in the seventies (4} and recently confirmed
by more precise measurements (5}, in agreement with guantum mechanical
calculations {6}. Recently it was used in the degenerate case to create
squeezed states of light (7) and in the non~degenerate case to investi-
gate the production of sub-~Poissonian statistics via optoelectronic
feedback (8). Only the non-degenerate case, in which the signal fields
can be distinguished by either their polarizations or their freguencies

will be considered here.

In contrast with previous experiments, we shall mainly concentrate
on the study and production of "macroscopic" twin beams, namely intense
laser-like beams with strong intensity correlation. Indeed, with the

available C.W. lasers and non linear crystals the parametric process



62

does not generate intense beams because the pump power is spread out in-
to an infinity of twin modes. In order to favor only a few pairs of mo-
des, the crystal can be inserted in an optical cavity having mirrors
with a high reflectivity for the signal freguencies. Above some pump
threshold, the system oscillates (9) and yields two intense light beams.
As the photons are created by pairs, it can be expected that the noise
on the difference I1 - 12 between the signal beam intensities is redu-
ced. In section II, we theoretically investigate the noise characteris-
tics of an ideal two-mode optical parametric oscillator (TMOPO) above
threshold. In section III,we describe our experimental set-up and we dis-
cuss the predicted phenomena including the effect of losses in the ca-

vity and the gquantum efficiency of the detectors.

I1I. THEORY

In this section, we present a simple theoretical model for computing
the characteristics of the TMOPO emission. We consider that the signal
fields are confined in an optical ring cavity (Fig. 1) having the same
damping rate for the two signal modes. We assume perfect phase matching
and we neglect any loss mechanism other than the transmission of the
coupling mirror. In addition we suppose that the one passgain and losses

are small. The mirrors are perfectly transmissive for the pump beam.

H.R. mirrpr 0 L coupﬁing mirror

L oo

pump beam & output

£ crystal length

L cavity length

H.R. mirror

Figure 1: OPO cavity

Assuming a linear depletion of the pump field inside the crystal, the
classical equations for the propagation of the fields in a parametric

medium (9) lead to :

_ Jik.R ~ % Coa
ai(ﬂ) = e i (ai(O) + & a aj(O)) (i,3 : 1,2) (1)
i#j
ai(O) and ai(z)(i = (1,2))are the classical amplitudes of the signal

field i (with wave vector ki) respectively at the input and output of

the crystal of length. dy is the mean pump field amplitude :
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B = egl0) = 3 ag(0) «y(0) (2)
and £ = 2cx2

where y is the gecond order non linear coefficient of the crystal. The
fieldsai arriving on the coupling mirror are related to the fields ai
leaving the coupling mirror (cf. Fig. 2) through the propagation in the

cavity and in the crystal :

—ik.L _ .
i e i = e, 4 Eag ay (i,3 = 1,2} (3)
i=3
where o, = I&OI {a proper choice of the phase of the pump field has

been madel.

On the coupling mirror of the cavity the signal fields inside the ca-
\ .

out

vity, oy and oy and outside the cavity, a;n and oy {(Fig. 2} are con-

nected by
L in
Gy = ro, + tai (4a)
aOut = —rain + to (4b)
i i i

where r and t are the reflexion and transmission coefficients of the

coupling mirror.

Pigure 2:

At resonance for the signal fields in the cavity (exp(—ikiL) = 1
for i = 1,2}, and with no input signal fields, one gets

*
Yo, = £ oy Gy {5a)
*
ya, = £ oy Gy (5b)
where y = 1-r
Equations (6) have a solution oy = oy = 0 corresponding to no oscilla-
tion. A non zero solution can be found :
S 2 .52, _Y, 2
G0 = 8" = eyl -8 (6)
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if the input field |ain] satisfies the threshold condition |ain| > v/&
the solution for the mean pump field is :

5.o0= X

oy £ {(7)

Now, our purpose is to calculate the fluctuation spectrum of the in-
tensity difference I between the two signal fields. In order to determi-
ne the field fluctuations we will use a semi~classical approach. We li-
nearize the classical eqguations in the vicinity of the above solution
for modes ai(w) detuned by w from the oscillating modes. Furthermore
we consider that these modes are driven by the vacuum fluctuations ente-

ring the cavity through the coupling mirror.

Above threshold the intensity fluctuations are proportional to the
amplitude fluctuations. We thus have to compute the noise spectrum of

the variable

olw) = a1(w) - az(w) (8)

From Eqs (3) and (4) we obtain the eguations giving a(w)

—-iwT -

alw) (e -1 +y) = -£ o, a {(-w) + tain(m) (%9a)

1wt - * cut

a(w) (e -1 -y} = =& ay @ {(-w) - to (w) {Sb)

. . . . in out .
where T = L/c is the cavity round trip time and ¢ and a“"% are the in-
put and output fluctuations corresponding to the quantity a. Let us note
that the fluctuations of a are not coupled to the pump fluctuations due

to the fact that a, = &2. Solving the set of the linear eguations (9)

1
and their complex conjugates, leads to the following expressitn for the

output fluctuations

-iwT . -
out out 1 1n(w) + alh(_w)) (10)

o (w) + « (~w) = = — (a
elu}T_1+2y

the spectrum of the intensity difference is proportional to

- * ’
s, (w) « ap% o (w) + o -w) |2 (11)

Using Eq(10), we finally obtain :

72
SI(m) = S0 (1 - 5 ) (12)
1+R” - 2R cosuT
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where R = r2 = 1-2y and T = t2 are the intensity reflection and trans-
Mmission coefficients of the coupling mirrors and Sy is the usual shot

noise.

Eg. (12) clearly shows that photon noise is completely suppressed for
w = 0. Suppression remains effective for freguencies p inside the Airy
peaks, that is for freguencies inside the cavity bandwidth (mcm(1—R}KT)
This can be well understood by recalling that the photons are emitted
by correlated pairs, but that the pair correlation is degraded by the
cavity : the intensities I1 and I2 on the two detectors are expected to
be nearly equal only when measured during a time longer than the cavi-

ty storage time 1/mc.

This physical interpretation can be justified by a simple model whe-
re the field is described in terms of photons only. The key assumption
of such a model is that the two photons of a pair are emitted simulta-
neously, but at random times. The mean rate of pair emission is denoted
E. When a photon hits the cavity coupling mirror, it has the probabili-
ty R for being reflected, the probability T for being transmitted
(R+T = 1). For a given pair of photons, the difference I of the intensi-

ties I1 and I2 detected by two photodetectors at time t is given by
Te) = &(t = (tyrma1}) - 6(t - (ty+m,7)) (13)

where t, is the first possible detection time and m, and m., are the num-—

0 1 2
bers of round trips of photon 1 and 2 before they exit the cavity. The
contribution of this pair emission to the Pourier transform lI{m?lz is
2 . . 2
[Tty |® = fexp(—1m(t0+m11) - exp(—lw(to+mzr))l
= 2{1-cos{(m,~-m,)wt)) (13)

The emigsion spectrum SI(w) is obtained by averaging (13) over the con-
tributions of the wvarious pair emissions :
1 2
= —— < |I

S1 (w) AT [T(w)]® > (14)
where the integration time At is much longer than any other characteris-
tic time. Noting that each pair contribution has to be weighted by the
probability TR™ TR™2 that photons 1 and 2 undergo respectively m, and

1

m2 reflections we get :



66

= 1 L m m - _
SI(m) AT E At mm, TR 1 TR 2 (1 Cos(m1 mz)wr)
2
= 2E(1 - Tz }
1 + R - 2R coswt (15}

We see that by a mere corpuscular approach we recover the preceding re-
sult that photon noise is reduced inside the Airy peaks of the cavity.
The latter calculation is also wvalid for a low finesse cavity, whereas
a high reflection coefficient had been assumed in the preceding calcula-

tion.

On the other hand, let us stress that the semi-classical calculation
allows one to derive the fluctuations of other characteristics of the
fields (10} and in particular to show that the sum of the phases of the
twin beams is squeezed. But dealing with guantum fluctuations by a se-
mi-classical method could seem guestionable. However, we can first re-
mark that it gives the right results below threshold : we have checked
that we obtain the same results by using the standard guantum methods
{11) for our two-mode-OPO assuming the case of "ideal noise" (12). Onthe
other hand, well above threshold, it is well known that the mean dquan-
tum fields are adeguately given by the classical eguations, and that
the guantum fluctuations have very small relative amplitudes. The linea-
rized classical eguations are also very frequently used to describe the
dynamics of the fluctuations (cf. stability analysis). When the vacuum
fluctuations are the only source of noise, our method seems to be a qui-
te natural one. In addition the semi-classical calculation and the pho-
ton pair model are in remarkable agreement for the fluctuations of I —I2

1
with fully guantum calculations above threshold (13) (14).

II1I. EXPERIMENT

Experimental set-up

The experimental set-up is sketched in Fig. 3. The optical parametric
oscillator is pumped by the 528 nm line of a single mode Ar+ laser, sta-
bilized on an external Fabry-Perot cavity. The non-linear medium is a

7 mm KTP crystal, which is used in a type 1I phase matching configura-
tion : the green pump beam propagates along an extraordinary ray and is
phase matched with an ordinary and an extraordinary beam at the infra-
red frequencies, with incident and output angles close to zero. The KTP
crystal is inserted in a 3 cm long cavity, closed by mirrors having a

2 cm radius of curvature. The input mirror has a high transmission for
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the green light and a maximum reflectivity for the infrared. The out-
put mirror has a 1 % transmission for the infrared light and also a
high transmission for the green light. An acousto-optic modulator ser-
ving as an optical isolator prevents the light back~reflected by the
cavity from interacting with the ar' laser.

laser stabilization loop
optical parametric ~ polarizing

,_<I:§—Hi‘h
oscillator prism ol 1

——E—(—{ (3
ATaser optical isolator

filter
180°

power combiner,

Figure 3: Experimental set-up. SPGKFUm
analyzer |

Above a pump threshold power of about 100 mW, the system oscillates

and two co-propagating cross-polarized beams with wavelengths close to
1.06 4 are emitted. The crystal is cut for exact phase matching at 0°
incidence between two waves at 1.064 um and one wave at 0.532 um {for
the purpose of YAG lasers doubling); the phase matching conditions for
0° incidence for pumping at 528 mm give emission of twin beams at 1.067
um and 1.048 um respectively. The stray infrared beam emitted in the
backward direction through the high reflectivity mirror is used to sta-
bilize the cavity length for maximum parametric emissiecn. In the for-
ward direction, a filter blocks the pump beam and the two infrared
beams are separated with a polarizing beam-splitter and focused on two
InGaAs photodiodes having a quantum efficiency of 0.9 at 1.06 p. All
the optical elements located after the output of the cavity are anti-
reflection coated for the infrared light. The two photocurrents are am-
plified by low noise 40 dB amplifiers and subtracted by a 180° power

combiner. The difference signal is monitored with a spectrum analyser.

The interest of type II phase matching is that the twin photons are
distinguished by their polarizations even if their freauencies are equal
or very close to each other ; this enables us to easily monitor the dif-
ference intensity of the twin beams, and its noise spectrum which is ex-

pected to be below the guantum noise.
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Expected signal

As exposed above, the various theoretical models predict a reduction of
noise below shot noise in a frequency band which is the frequency pass-
band of the cavity. The noise should be completely suppressed near the

zero frequency. However, this result has been obtained by assuming that
the only loss mechanism comes from the coupling mirror. Actually other

losses have tc be taken into account. Absorption and stray reflections

on the two faces of the crystal will be represented (Fig. 4) by los-
ses coefficients R1 and R2 ('I‘.E = 1—81, T2 = 1-R2).
cy of the detection will be accounted for by a transmission coefficient
T

The quantum effigcien-

3 Ry ,T R, T T
2772 1,
Y \qcrystal & \R'T

Detector

Figure 4

With these assumptions, the probability for one photon to undergo 0
reflection and be detected is T1 T T3. The probability for one photon
to undergo m reflections and be detected is T1 T T3 (RT2T1)m. Inspection

of the various possible events at the detectors leads to the following

result:
= Lo m
SI(w) 2E [m 11T3T (RT2T1}
_ 5 m m _ ’
B m, TiT5T GRTTM 1Ty (rT,T,)™2 cos (m, mz)wr}
- -
1-R
= 2Enjl1 - n(‘2 ).
1T+R "=2R coswT
where R' = RT1T2 is the effective reflection coefficient of the cavity
TT1T3
and n = wTseEa is the effective detection efficiency
1—RT1T2

The shot noise suppression is thus degraded by a factor n.

With T3 = 0.20, R1:R2 = 0.005, 1-T=R = 0.99

one dgets
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n = 0.45

Even with losses in the cavity which amount to about half the trans-
mission of the coupling mirror, a sizeable reduction of the quantum

noise should be observed.

IV. CONCLUSION

Such highly correlated intense beams could have applications in very
various demains : first, it may enhance the sensitivity of absorption
measurements {15} : if one inserts an absorption cell on one arm and
scans the frequency around an absorption frequency, the signal-to-noise
ratio of the absorption dip recorded on the signal I1 - 12 is no longer
shot noise limited. Second, in a way analogous to ref. (16), one can

monitor the I, intensity only and use this signal to react on I, (or

1 2
on the pump intensity). This would provide an intensity squeezed laser
like beam, i.e. an approximation of a Fock state |N>, which has so

far never been obtained in the laboratory.
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The competition between transitions in a driven three-level atom
generates interesting dynamical correlations in the radiated
electromagnetic field. We first review the problem of a three-level
atom in a high-Q cavity excited by a quantized radiation field. We
examine the phase sensitivity and squeezing properties of this
two-photon system. We then discuss the quantum fluctuations in the
fields radiated by a three~level atom in free-space and show how the
three-level dynamics modify the phase~sensitive squeezing in the
fluorescence. Intensity correlations between the emitted photons are
studied and evidence for quantum Jjumps in the three-level dynamics
examined. The description of sequential photoemission correlations
using probability amplitudes is compared with Bloch equation

treatments based on the quantum regression theorem,
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1. INTRODUCTION

In this paper we examine some of the fundamental processes by
which three-level atoms can radiate light with manifestly quantum
properties. These atoms have three energy levels, one of which is
coupled to both of the others by electric dipole transitions. Three
level-configurations are possible. The "ladder”~configuration has the
ground state coupled to the most excited state via an intermediate
third level. The "lambda"-configuration has two lower energy states,
both of which are coupled to a common excited state. Finally, the
"vee"-configuration has two excited states both of which are coupled
to a common ground state.

In section two we consider the production of squeezed
superposition states by the resonant interaction of a three-level atom
in a ladder-configuration with one or two cavity modes [1]. In section
three we discuss the possibility of squeezing by resonance
fluorescence from a driven three-level atom in a lambda-configuration
[2]. Finally, in section four we consider the quantum Jjumps and
intensity correlations in fluorescence from a driven three-level atom

in a vee-configuration [3].

2.CAVITY FIELD SQUEEZING:THREE-LEVEL JAYNES-CUMMINGS MODEL

The intra-cavity spontaneous emission from a specially prepared
two or three-level atom can generate field states that are a
superposition of the vacuum and the one- or two- photon states [1,4].
These states can exhibit squeezing, that is fluctuations in one
quadrature of the electric field that are reduced below the level
agssociated with the vacuum [5]. These superposition states are
fundamentally different from the usual squeezed or two-photon coherent
states in that they are not minimum uncertainty states of the

uncertainty relation
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Aa1Aazzl/4

where a, and a, are the hermitian guadratures of the annihilation
operator (a:aj+ia2).

We consider a three-level atom with states 1>, 2> and 13> in a
ladder configuration resonantly excited by a quantized fieild
consisting of one or two cavity modes. We imagine the cavity Q-factor
to be sufficiently high that dissipative interactions may be
neglected, and ignore temperature-dependent thermal effects. Such a
system is experimentally approachable in the Rydberg atom maser [6,7].
We will demonstrate that a suitably-prepared atom interacting with a
single cavity mode generates a maximally-squeezed two-photon
superposition state, whereas if a pair of field modes is involved,
multimode squeezing in superpositions of the modes is generated by the
(reversible) spontaneous emission [1].

For a single-mode interaction, we take as our Hamiltonian the

rotating-wave (RWA), interaction picture form

H=n{a* (g, l1><2{+ g2!2><3\)

+(g‘12><13+g213><21)a} (2.1}

where the coupling constants gt, gz are taken as real. The three-level
atom is prepared in a linear superposition of the ground, and

uppermost states
|a(t=0)>=cos(B/2) |3>+ exp(iP)sin(Ds2)[1> (2.2)
by coherent excitation with suitably chosen fields prior to t=0. The

initial atom-field state is a product of the atomic superposition

state and the vacuum field
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JYit=0)> = lA(t=0)>l0‘>. (2.3)
The Hamiltonian (2.1) couples the atom-field state [3>]0;> to the
states 12>11;> and l1>12,> but in RWA the state II>!0;> is uncoupled.

At time t, the interaction picture wavefunction is then

[Y(t)>=cos(B/2){C(t)|3>10,> + C(t)12> 11 >+C (trl1>|2.>}

rexp(ig) sin (6/2) 11> 10¢>. (2.4)

The time-dependent Schritdinger equation gives for the state amplitudes

C,(t)=[2g] v} cosft]/[ 2] +g; ] (2.5)
Ci(t)=—i(gé(n)sinﬂt (2.6)
¢, (t)= Z(a,d, /) (cosit-1) (2.7)

2
whereS$l is the effective Rabi frequency,gz :2g}+g:. If f§é1:gz, then
the dynamics simply reflects the periodic interchange of two quanta
between atom and field. After half a period, when cos(l t=—-1, the

system is in the state
l¢>:fl>{exp(i¢)sin(8/2)l0{>—cos(8/2)f2{>} {2.8)

which is a product of a pure two-photon superposition state and the
atomic ground state. The system is in this state periodically, and at
these times the field exhibits squeezing. If we choose the phase ¢ to
be zero then at these times, the variance in the a, quadrature is

(Aa‘)2 = i(1+4cosz(9/2) - 2 J2cos(6/2)sin(B/2))
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which is clearly squeezed if [2 cos(B/2)-sin(f/2) is less than zero.
Here the smallest possible variance in a, is
<A81)22(1/4)(3—J§3z0.13763, corresponding to about 45% squeezing below
the standard quantum limit.

When the three-level atom is excited by two quantized field modes

the RWA interaction picture Hamiltonian is
H=b{g, (B! [1><2) + i2><1] by+g, (at12>¢3] +13><2} 2) ). (2.9)

Two-mode squeezed states are superpositions of photon states in which

both modes contain the same number of excitations. The simplest is the
superposition of the two-mode vacuum state and that in which each mode
contains a single photon. Such a state is generated from the two-mode

vacuum by an atom prepared in the superposition state eq.(2.2):

|q;(t:0)>:[A(t:0)>loa> lob> (2.10)

where a,b denote field modes. Now H couples ]3>|0,>|0y> to the states
l2>|1a>lob> and !1>l1a)l1b)' The zZero-quantum state Il>10q>(0b> does

not evolve. At time t,the wavefunction is

Np(t)>=cos(B/2){C,(t) [2> 15> [04>+C (£)]3> (0> [0y>
B 11> |1, 1>}

+exp(ig)sin(§/2) [1> [0g> [0y >. (2.11)

Again, solution of the Schr&dinger equation for the probability

amplitudes ﬁ(t) is simple and gives

Cylt)=la] +e7cost] A (2.12)
C,(t)=-i(g, /n)sinQt (2.13)
C, (t)=(&, &, /QF) (cosQt-1) (2.14)
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where Sl is the effective Rabi frequency§122g3+g§. These simplify now
if g1:g2 so that again two guanta are periodically exchanged, one into

each of the two modes. When cosflt=-1, we have
Wit=nAy>={1>{-cos(8/2) \1a> }15>+exp(i¢>)sin(8/2) [0,> [ob>} (2.15)

a product of the atomic ground state and a pure state of the two-mode
field. This pure state is related to the thermofield [8] or two-mode

squeezed state, generated by the sgueeze operator
L3
S(f)=exp(Tab-Ta'b! ). (2.16)

The multimode squeezed states are superpositions only of those states
in which both modes contain the same number of photons. The strong
correlation between the modes gdenerates enhanced Bose-Einstein
fluctuations in each single mode but squeezing in mode superpositions.
The density matrix for the a-mode is found by tracing the field

density matrix over the b-mode:
p =cos 2(8/2) | 1a><1a] +sin® (8/2)| Q> <0, (2.17)
a

is a statistical mixture of one and zero photons. There is no

phase-information and the quadrature operators exhibit enhanced rather

than squeezed fluctuations
(Aay * =i(1+2c05” 6/2))=(Aa,)} (2.18)

A similar result holds for the b-mode.
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0.2

v v v v ” v T - > -

0 10
i

Fig.1: The evolution of the variances in the a, and a, (o e =)

and b1 and b, (——) quadratures for the three-level,

2
two-mode JCM with §=3w/4. The fluctuations in these modes

are phase-insensitive and do not exhibit squeezing.

The two fluctuating modes are nevertheless tightly correlated. He
introduce superposition modes with annihilation operators

F=(a~-exp(i€)b)f[Z (2.18)

b=(b+exp(-i€)a) /]2 (2.20)
In terms of these superposition mode number states, the two-mode field

wavefunction in eq.{2.15) has the form

[F>=exp(id) sin(6/2) IO§>105>

+J‘_£c:0s(9/2){exp(i€) 25> [0y >~exp(-i€) [0;> {2, >} (2.21)

This state would be the product of two single-mode superpositions of
the two-~photon type except that the contribution from ’26>‘2i> is

absent. The individual superposition modes are not in pure states and
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0 ' 10

Fig.2:The evolution of the superposition mode variances in
the E}(dashed) and E&(solid line) quadratures for the
three-level, two mode JCM with §=3r/4. With this choice of
phases the E& quadrature exhibits squeezed fluctuations that
may be reduced by up to 40% below the standard quantum

limit.

mixed state effects degrade the squeezing. We define the in-phase
quadrature operator

B =(1/2)(B+F") (2.22)
to generate a variance

(Aag)? =(1/4) (1+2cos? (§/2) +sinfcos(e -¢)) (2.23)
If € -¢=N, the variance is
(AF, ) =(1/4) +(1/4) (1+cosB -sind ) (2.24)
which is squeezed if (sinf-cosp)>1l. The minimum variance in a, is

1
produced if the atom is prepared initially with cosP=-1//2 and sin®
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=1/J2, and is (D% Y =(1/4)(2-[2)$0.14645, corresponding to 40%
squeezing, marginally less than the squeezing associated with

single~mode pure superpositions (each of the superpositions &, b are

put into mixed states by tracing over the other superposition mode}.
3. SQUEEZING IN_FREE-SPACE FLUORESCENCE FROM THREE-LEVEL ATOMS

Walls and Zecller [9] predicted squeezing in resonance
fluorescence from a single two-level atom interacting with a coherent
field. Three-level lambda systems were sugdested as a source of
squeezing because,although nonlinear interactions are present,
negligible upper level population is produced on two-photon resonance
because of population trapping [10]. We have analyzed the squeezing
properties of lambda system fluorescence excited by two coherent

fields [2]. We consider the level scheme shown in Fig. 3:

fo—t ]
/ Q, \T
1/ \

[ % __ _
éb 2
O E;%' lgrgo

Fig.3:Three~level atom energy levels. Relaxation rates‘1

and F; from the excited state 1> to the ground states |0>
and |2> are shown, together with ground state relaxation
rates I:z and r;o

The atom, in level }0> interacts with two single-mode laser
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fields a,b of angular frequencies QE,QE, polarizations €,, € which are
initially in coherent states 10(>, 1> q;(c:a,b):(ﬁi)uz where n_ is
the mean photon number. We write the laser fields in terms of positive
(E:) and negative (E;} frequency components
+ -
Ec—(Ec + Ec}gc (3.1

and these induce Rabi frequencies

in

N2, Farzenvi s pegalo> , U= 2(5uTs [2eV) Clpegy 12> (3.2)
where V is the quantization volume and i the dipole operator. We
introduce the quadrature operators

E, *E¢ exp(iWt)+ E, exp(-iwt) (3.8)

E,, =~ [Egexp(itg t) ~Eqexp(-iw; t)] (3.4)
s0o that the fields are

EQ:Eic

cosqt+E2csinu%t. (3.5)
We choose in this section to calculate normally~ordered field
variances. The fluorescent dipole source fields are given in terms of

the atomic dipole raising and lowering operators 11><0\ and 10><1] by

{111

E,= Ql1><o] (3.6)

+

EQ:Q>Q10><1K (3.7}
where 2

Wihe ip.gqlod
= ————— - = 3.8
d%l Lne, 2R Ly (3-8

and similarly for the 1-2 transition. Here R is the atom~detector

distance. The normal-ordered variances are [12]

¥, =< AE 2 B ¢ —IZP + ~|2Re‘) t) ] ] 3.8
1ﬂ—< ( 1ﬂ) >/ > H( } °‘( ) ( }
and
F =< AE b4 ¢ = ZP t)~[2 Im t l (3.10)
< 9 ) /a ‘1( ) PO\( )

Squeezing occurs in the fluorescent field if Fﬁa or an is negative,
These variances are determined by the density-matrix elements.ﬁi(t)

and P (t) which obey the three-level Bloch equations [13,14]. We solve
[-}]
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these by matrix methods in terms of the eigenvalues and eigenvectors
f156].

The steady-state variances are found to be strongly-dependent on
the ground state relaxation rates K; and go . We can determine the
steady-state (t-+w) quantities F‘!o ’qu’ Reﬁ” and Imj){"t and .Pﬂ . These
are plotted in Fig.4 as a function of the two~photon detunimgA. A

negative (squeezed) variance FHG is produced

0.20 AN

-0.20

Fig. 4:Dependence of the three-level atom fluorescence
variables on the normalized two-photon detuning Z&
=(1/2)(8a+ B} for 80 :6&»' The solid line is the
excited state population; the real part ofj%1 iz dashed, the

imaginary part dash-dot; the wvariance F1a is __ and Fén

is __ _ _ __. The Rabi frequencies are chosen to be

9.“:0,2((;' +E;.):Qb’ and r; :rz. We set rgc =(1/2)(l’11 +I-2') and

f;zzo.

near two-photon resonance, whereas a squeezed variance an is produced
in the wings of the lineshape. The squeezing, we show below, is
entirely due to the lower-state relaxation creating essentially a
two-level system from the three-level atom.

Had we set the lower state relaxations‘zo and Bz equal to zero,
no steady-state squeezing is produced: population trapping eliminates

one—~photon coherences [2]. To second-order in the two-photon detuning
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A, we find for the purely radiatively-damped three-level atom

B =[(44/9)sin2¢]? (3.11)

Fp =[(40/8)sin2¢cos¢l? (3.12)
where

@ =tan™ (-Q,/9Q,) (3.13)

and the two-photon Rabi frequency Sl is given by

QO =(E+qd). (3.14)

The lower state relaxation unbalances the symmetry between ground
states to prevent complete destructive interference between the two
excitation channels. We find in steady-state, that F,, is negative for
A/(n +f;) between -1/2 and +1/2, and an is negative outside this
interval, The amount of sqQueezing increases as F;o increases. As [}o
increases, the state 2 population is slaved to return to state O

rapidly and plays no role in the dynamics, so that the three-level

system reduces to a two-level system. For this effective two-level

system
R, =2S20E+ a8/ (25 +a8] 4872 (3.15)
Fyq :2§1;(29:—46:+‘5‘)/( (2§1:+4é: +§ 2 (3.16)

where'f::ﬁ+f} and 53 is the 0-1 one-photon detuning. Similar results
have been cobtained for squeezing in two-level resonance fluorescence
(9. For 6=0, N =0.2(T[+F), they give Fpo % 0-074 and Fy,x 0.063 in
agreement with Fig. 4.

Transient squeezing can also be denerated by the three-level
lambda system. We have studied this [2] using dressed atom or
uncoupled state [18]1 representations to calculate the time-dependent
density matrix elements. In Fig.5 we plot FHa and FZa versus time

withf:=f;and we put Ez:O; the lasers are tuned to resonance
(éh=0=8£) and we have chosenSl/(ﬂ+E):200,¢':~3n/8 {corresponding to
S]“/(r'lﬂ;):ve and 9, /([+(;)=185). Note that F,, is squeezed for almost

all times
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0.30 .

0 8.2

-0.20 |

Fig. 5:Transient resonant evclution of wvariances
F}a(upper) and qu(lower) plotted against (n+ﬂ)t for large

Rabi frequencies (see text) such that (Q:+Qtf“:200(ﬂ+Q)

in this transient regime, with a slow decay of the oscillations around
a finite value. The long-time values of F1a and an decay to zero (2]
as discussed above.

4, QUANTUM JUMPS AND CORRELATIONS IN_ THREE-LEVEL FLUORESCENCE

So far we have concentrated on the nonclassical squeezing of
quadrature variances in light emitted by three-level atoms. The
intensity correlations are also of interest in studies of three-level
atoms. Quantum Jjumps in the fluorescence from three-level V-systems
have attracted much theoretical [17] and experimental [18] interest.
Here we examine the optical correlations in the light emitted by a
V-system {Fig.6)} in which a strongly-allowed transition competes with

weak excitation to a metastable state |2). We will describe

the intensity correlations for two cases:purely incoherent excitation
using Einstein rate equations and coherent excitation using dressed

atom methods.
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1/ 9 \A

1 2

Fig.6:Three-level V-system in which a strongly-allowed
(and rapidly decaying) transition competes with weak

excitation to a metastable state 2 with small decay rate A,.

The intensity correlations and the degree of second-order
coherence for laser-driven atomic fluorescence is normally calculated
uging the quantum regression theorem [11]. Here we use instead the
delay function method developed by Cohen-~Tannoudji and Dalibard to
describe sequential emission of photons. Let wz(t) be the probability
density for an interval T between one photon and the next, normalized

so that
oD
ng(t)dtzl (4. 1)
(<]
The probability P{t) of no further photon to be emitted within T of
the first emission at time O is
T
P(t)=l~fw2(t')dt'. (4.2)
>3
The probability that any photon is emitted between times T and T+dr
after one is emltted at time O is Q(T)dr, given by
Q(t)~w (t)+ fé(t)w {t-T)dr. {(4.3)
The Glauber zecond-order coherence function g (t) gives the
normalized correlation function for the joint detection of a photon at
time O followed by any other (not necessarily the next) at time T and
is given in terms of Q(T) by

1]
g%(1)=a(1) /awE). (4.4)
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For incoherent excitation of the V-system, we may be interested
in correlating emission from 1 to 0 and from 2 to 0 with each other.
We label the 1-0 and 2-0 transition photons as 1 and 2, and the degree
of second-order coherence gé:%t) gives the normalized correlation of
photons of type i. If i=1, we are interested in the strongly-allowed
fluorescence and its correlation through g:f(t). The rate equations

for the population densities in states 0,1 and 2 are

4 = —
S8 =00 Beap ~ 4Py (4.5)
d --

S5 =R+ B (4.6)
a - -

;t?ﬂl - c‘?ﬂ.l * S.POO (4.7)

where a=A‘+B1W', b=B, W q:Az+Bsz and s=B, W and A and B are

1My 2"’
Einstein A and B coefficients, with Wi (i=1,2) the energy density of
radiation exciting the O0-1 and 0-2 transitions. In calculating g:?(t)
we have assumed that spontaneous emission from level |1> does not
repopulate level ]0> but that spontaneous emission from [2> does
repopulate }0>. This technique allows us to keep track of sequential
rhoton emissions from the 1-0 transition and to calculate the wz{t)
function. We can write the probability density wz(x) in terms of the

probability of remaining in the atom-field dressed state manifold

without emitting a photon:

w_{T)=-d( + + Y=A (4.8}

i at foe B( 922 1&1
We write the general eq.(4.3) in Laplace-transform space

Q(z)= wz(Z)/(l—wz(z)) (4.9)

where a(z):I(Q(t)) and uz(z)=1(w2ﬁt)). We find

Q@ = AR W, + ABW, (A2 +B,W,)
(-2, ) 2-2D) Z (-2, )(2-2D) (4.10)
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where X+=T/2 b4 [T2~4(aq+bq+as)]"2and T=-{a+b+q+s). In the experimental
studies of quantum jumps and the observation of fluorescent two-state

telegraphs [18], the metastable state was exceedingly long-lived, so

that A1>>A2 and B’W‘>>BZW2. In this case we find from eq. {4.10) and
eq. (4.4) AT AT
LTt S AV
! 2(Ag+BoW) 2(A¥B,W,)
(4.11)
mmmmmmmm
-2 -1 1] i 2 3 4 5 B 7 8

2)
Fig.7:The degree of second-order coherence g:1(t) versus
lnAF from eq.{4.11} for incoherent excitation with A =1/2,

4 b

B1W1=1, A2=1.0x10 and Bzwzzl.Oxlo .

where A -(2B, W, +A, +{B,W,) and X\ x —((3B,W,/2)+A,). This result agrees
with that obtained earlier using the quantum regression theorem [3].

This is shown in Fig.7. We note that at short times the correlation

function is that of

the dominant two-level part of the dynamics and exhibits antibunching

but that at larger times there is a sudden drop as the metastable
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transitions (the "Jjumps”) play a role. The "excess” correlations
represented by the hump visible in Fig.(7) are the signature of a
teledrarvh signal. A regular classical square wave telegraph [11] would
generate a redular triangular gcn(t). Here, a distribution of "on” and
“off" times smooths the correlation and quantum effects are
responsible for the initial antibunching.

When the atom is driven by two coherent laser fields, of which
one is rescnant to the transition frequency of the strong transition
10> l1> and the other is detuned to that of the weak transition,lﬂz,
Jo>+ 12>, the dynamics of the atom can be described by the following

equations of motion.

dC. = -iQ,Cc, -1 C
-0 —2'11'222.

at (4.12)
d(l = -iq,c.-YX ¢

GO T e M (4.13)
d= _ _: ] . —_

Jtcz = _tiQ,_C,-v ‘(A{H%z)cz (4.14)

where C° and Ciare the probability amplitudes of states }0> and fi>
respectively and E;:Czexp(iéat) is used instead of the probability
amplitude C, of state I2>, in order to remove the fast oscillatory

S
factor. The Rabi frequencies 91 and Qz drive the transitions [0>-|1>
and |0>-+{2> respectively. The damping factors ‘1 and i; are one half
of the Einstein A coefficients for the state |1> and |2>. Solving the
equations of motion and approximating the solutions under the
conditions gl’ﬁﬂ >>§h:$ , Cohen—-Tannoud ji and Dalibard {19] have shown
that
Pery= e, () +lc, @)t +lc, 0y

:X:(ﬂ:—’&fcosk;w f1l1s in\;t, ) e-“'.[ + \u\lem‘zr‘t (4.15)

where

)"= ,51:_{11 (4.186)
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Q, (Rs = 5,)
(3 05+ 00)-Rs ][4 (5,0 Ry (4.17)

(LY

R, :xz-aaz»«%[szzxﬂa o ;~x‘z)]/[(%f.~z&:)iz>§x$] (4.18)

and F is the real part of Rs‘ The first term in the probability
function P(T) is that of the two-level atom dynamics and the second
term is due to the presence of the metastable state }2>. Using the
general relation eq.(4.9) and wz(t):—dP/dt we get the probability
function

Q(z)=1-2P(2) (4.19)
2@

~ x gl -Z + 281?‘ \-‘
2{23+ (38,+20)2%4 (25240} |2 2T (282%.9% )+ 127 §,

where we have again used the assumption that the atom is in the ground
state at delay timeT =0. Thus the degree of second order coherence is
given by

511\ (7) = 6(1)/&-\02@(1) (4.20)

= (2P {282+ QY) + w2 Y, 1 (z+20) 2T
(2%« (38, +20)2" (25, R} )z + 27 (252492 )+ 112922 ¥, ]

The degree of second order coherence desoribed above differs from
the normal degree of second order coherence g’é(t), since it gives the
relation between one photon and any other photon of any kind {whether
from the 1-0 or 2-0 transition) However it is wvery unlikely we will
get a fluorescence photon due to the \2)*\0) transition and there is a
very slim chance to have a consecutive 10>«|2> transition. Thus gukt)
will not be very different from gﬁkt).

To find the degree of second order coherence using the quantum

regression theorem, involves 9th order polynomials,and 9 differential

equations must be solved [20]. In contrast by using the Q(T) function
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Fig.B8:The degree of second-order coherence g;”(r) for
coherent excitation versus 1n§t, when S, =8, f1=1,i; :lx10~5
andglzzlxlo-l. The dotted line is plotted for a zero

detuning; the solid line is calculated for A&=§L/2.

we can find g:f(t) without any major difficulties.

The degree of second order coherence is plotted in Fig.8. When
the delay time is small, we have Rabi oscillations at frequencyih,
and antibunching at short times. At long times we again see a plateau
before the metastable state makes its contribution felt but only if
the probe laser is tuned to sn a.c. Stark shifted level. The presence

of quantum jumps depend here upon the details of the coherent

excitation.
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INTERFEROMETRIC DETECTION OF GRAVITATIONAL RADIATION
AND NONCLASSICAL LIGHT
1 and Gerd Leuchsl:/?
lMax-Planck-Institut far Quantenoptik,
Postfach 1513, D-8046 Garching
2gektion Physik der Universitdt Miinchen

Walter Winklerl, Gerhard Wagner

I. Introduction

Prototypes of laser interferometric gravitational wave detectors have
been developed for more than a decade and have now reached a stage
where large, km-long interferometers are planned in several countries.
In the first four sections the predictions for sources of
gravitational radiation and the present detector performance is
briefly reviewed. The prototype interferometers have essentially
reached the shot noise limitl). However, this fundamental limit may be
overcome using techniques being developed in quantum optics. A
graphical approach to the noise analysis of the interferometer is
presented in the 1last two sections, showing that squeezed states of
the radiation field may improve the interferometer sensitivity for

measuring gravitational waves.

IX. Characteristics of Gravitational Waves

Every mass 1s associated with a corresponding gravitational field
surrounding it. Intuitively one would expect, that accelerated masses
would give rise to the emission of some sort of radiation - analogous
to the emission of electromagnetic waves by accelerated electrical
charges. Einstein predicted the existence of gravitational radiation
already in 13816. Corresponding to his Theory of General Relativity
gravitational waves are expected to be transversal and to propagate
with the speed of light like electromagnetic waves. However, there is
an important difference between electomagnetism and gravitation: the
sign of electrical charges may be positive or negative, whereas there
is only one type of mass. As a consequence, there is no gravitational
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dipole~radiation. This can also be seen from the analogy to the
expression for the power emitted by an oscillating electro-magnetic
dipole:

dE

dE e 52 = (=2 [vdq)? (1)
dtlel mag.dipole - - (at fvda)

It is proportional to the square of the second time derivative of the
dipole-moment p. The time dependent velocity of the charge q is
denoted by v. The analogous expression for any moving mass
distribution is the square of the time derivative of the total
momentum:

dE (=3 fvdm)? = 0

dtigrav. dipole dt
Owing to conservation of momentum in a closed system this expression
vanishes. Therefore, in the case of gravitation, the lowest
nonvanishing order multipole radiation 1is the quadrupole radiation.
The emitted power 1is proportional to the square of the third time

derivative of the mass-quadrupole-moment:

dE e Q2 (2)
dtlgrav. quadrupole

Fig. 1: Spatial strain pattern produced by a gravitational wave.

A gravitational wave manifests itself in a variation of the metric of
spacetime -~ e.g. in a change of the optical distance between free

testmasses, which can be monitored by registering the light travel-

time between these testmasses. The effect of a gravitational wave can

be described as a time dependent index of refraction of the lightpath;

another equivalent description introduces a time~dependent strain of

Space, as indicated in Fig. 1.

The quadrupolar characteristics of the gravitational wave can be seen
from the elliptic deformation of a circular arrangement of free
testmasses, if the plane of the circle is perpendicular to the
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direction of propagation of the wave. A positive strain in one
direction is accompanied by a negative strain in the perpendicular
direction; half a period later the signs of deformation have changed.
Fig. 1 shows one of the two independent polarizations of the wave; for
the second one the pattern is rotated by 45°. The amplitude h of a
gravitational wave is given by a dimensionless quantity, the strain of
space it introduces:

h = 28t/¢

82/ is the relative change of distance between testparticles, e.g. of
the axes of the ellipses indicated in Fig. 1. Unfortunately the quanti-
ty h is usually discouragingly small for any measurement in the vicini-
ty of the earth. In order to get a strong wave 6 has to be as large as
possible according to Eq. (2). This implies, that the masses involved
have to be accelerated as fast as possible. As simple calculations
show, gravitational waves of measurable strength cannot be produced in
a laboratory. Consider for example as a source a metallic cylinder with
a length of 1m and a mass of 1 ton. This cylinder emits gravitational
radiation, if it rotates around an axis perpendicular to its axis of
symmetry. The emitted power increases strongly with increasing frequen-
¢y of rotation. Just below the limit of rupture the amplitude h produc-
ed at a distance of one wavelength of the gravitational wave is only on
the order of 107%% - much too small to be seen by any presently con-
ceivable detection technique.

Fortunately astrophysics tells us about scenarios, where huge masses
are so strongly accelerated, that despite their big distance the
amplitudes of gravitational waves produced are not totally out of
reach for experimental access?) .

A favourable type of source for gravitational waves are compact
binaries; these are stellar objects consisting of two neutron stars or
even black holes. 8Such objects emit gravitational radiation while

rotating around their common center of mass.

The related energy loss leads to a shrinking of the relative distance
and a corresponding increase in angular fregquency. Finally the two
objects - with masses in the order of a solar mass - are accelerated
close to the speed of light, and during the following collapse a huge
amount of energy is emitted in form of gravitational radiation - most

of it in a time interval shorter than one second. An expected signal
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of this type is drawn in Fig. 2 indicated as line (a)3).
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Fig. 2: s8Signal strength of some sources of Gravitational Radiation as
a function of frequency f. The bandwidth for evaluation of
the detector-signal was chosen to be equal to f for
supernovae, and f/n for the n cycles to be observed for
compact binaries.

a: compact binary in the center of our galaxy
a': compact binary in the Virgo-cluster

b: Supernova in the center of our galaxy

b': Supernova in the Virgo-cluster

c: Supernova in the Magellan cloud

Another conceivable source are supernovae of type II., Under particular
circumstances they occur at the end of the life of a normal star, when
the nuclear fuel is used up. The thermal motion of the atoms decreases
and can no longer balance the gravitational pressure; the inner part
of the star starts to collapse. The huge amount of energy released
shoots off the outer shell leading to the well known optical spec-
tacle. In the center, however, - not to be seen optically from outside
~ a very dense core of strongly accelerating masses develops. Again a
short, intense pulse of gravitational radiation is likely to be emitt-
ed, if the collapse takes place asymmetrically. Such an asymmetry will
usually develop owing to the initial rotation of the stars. A signal
expected for this type of source is drawn in Fig. 2 as line (b). The
supernova which occured at the beginning of this conference in the
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Magellan cloud about 55 kiloparsec away would have produced a pulse
with Fourier components along line (c¢), if we assume that the emitted
energy was 1073 of a solar mass. The signals a and b are expected to
be produced by events in our galaxy - but most likely the event rate
will be low, only a few per century. The Virgo cluster, however, con-
tains a few thousand galaxies, leading to a correspondingly higher
event rate - but the signal strength will be much lower due to the one
thousand times larger distance (signals a'and b'). From Fig. 2 one can
deduce, that it would be most desirable to get strain sensitivities on
the order of 10721 for the detectors of gravitational radiation.

I1XI. Detectors for Gravitational Radiation.

When Einstein first introduced the concept of gravitational waves, no-
body dared to attempt an experimental verification for decades because
the effect is discouragingly small. Nevertheless, in the sixties
Joseph Weber of the University of Maryland started his pioneering work
developing resonance detectors. The basic element of his antenna was
an aluminum bar with dimensions on the order of one meter and a mass
of more than a thousand kilograms. The spatial strain introduced by
gravitational waves should couple to the longitudinal fundamental mode
of the bar and change the state of oscillation of the bar, if the as-
sumed shortpulse excitation had Fourier components at the fundamental
eigenfrequency. The motion of the bar was sensed with piezocrystals
attached to its surface. Based on Weber's work the Munich-Frascati
coincidence experiment4) was optimized to give a strain sensitivity of
several times 10717, Only the thermal motion of the antenna and no
correlated signals have been cbserved.

In the meantime work went on to cool the bars down to liquid helium-
temperature and to use electromechanical transducers less noisy than
the original piezo crystals. Presently the best strain sensitivity
reached®) is 10—13, an impressive figure but still almost three orders
of magnitude above the level of the signals expected to occur a few
times per month.

A completely different approach towards detecting gravitational waves
is the concept of a broadband antenna. The basic idea is to sense op-
tically the gravitational wave induced change of the metric of space-
time, e.g. to measure the variations of the distance betweeen testmas-
ses interferometrically. The simplest approach is a Michelson-inter-
ferometer, where the beamsplitter and the two mirrors serve as test-
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masses. For a gravitational wave of optimum polarization and direction
of propagation the two arms experience strains of opposite sign as can
be seen from Fig. 1. The created armlength~difference can be sensi-
tively detected. The observed phase-difference between the two inter-
fering beams follows the influence of the gravitational wave directly
and therefore the setup is inherently broadband. This allows the exact
reconstruction of the signal in contrast to a resonant system, which
shows only the spectral density of the signal at the resonance fre-
guency.

Another advantage of the broadband antenna is the possibility to in-
crease the lightpath up to half a wavelength of a gravitational wave L
=c Tgrav/zf thereby increasing the quantity to be measured, namely
the path difference between the two arms. In contrast to this the di-
mension of a resonance detector for a given freguency is limited by
the speed of sound: L =v Tgrav/z’ therefore the Gravity-wave induced
displacement in a broadband detector is larger by a factor of c/v.

Certainly it is expensive to realize very 1long optical paths, and
therefore, in several laboratories prototype interferometers have been
constructed first. In order to get a long optical path the light beams
are reflected back and forth in the interferometer arms many times
before they are recombined at the beamsplitter. The beams in each arm
can either be put on top of each other as in the case of a Fabry-Perot
or be more or less well separated as in an optical delay line. The
latter approach was chosen in the presently most sensitive setup which
is run by a group at the Max-Planck-Institut fir Quantenoptik (Fig.3}.
The mirror distance 1 is 30 m, and for the latest measurements %0
beams have been used to give a total pathlength of L = 2.7km.

The beamsplitter is adjusted to sit in the symmetry plane between the
two near mirrors. Consequently there are no spatial fringes to be seen
at the output; the output power varies sinuscidally as a function of

pathdifference between the two interfering beams as indicated in Fig.4.

The information about the time dependent pathdifference is provided by
a fast servo loop, which compensates deviations from a given point of
operation by a voltage across Pockels cells sitting in the lightpath.
This voltage is taken as the output signal. In practice only one
output port is used, and the point of operation is one of the minima
in Fig. 4. This implies, that a modulation technique has to be used

for stabilizing the interferometer.
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Fig. 4: Light power at the two output ports of the interferometer as a
function of optical path difference in the two arms.

More easily to understand is ancther nulling method, where the differ-
ence between the photocurrents at the two output ports is taken. The
point of operation is one of the points a, b, ¢, in Fig. 4 of equal
output power. Again a servo loop keeps the interferometer at the
chosen point of operation. If now the input power fluctuates, then the
two photocurrents fluctuate correspondingly, and the difference re-
mains zero. But if a mirror is shifted, the power in output 1 e.q.
increases, in output 2 it decreases, leading to a compensating voltage
across the Pockels cells.
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IV. Noise sources

The most fundamental limitation of the sensitivity inherent to the
detection technique arises because of the quantum nature of light. In
a coherent state the photon number fluctuates according to
Poisson-statistics. This shot noise will be dealt with in the next two
sections. Here we discuss a few additional noise sources which have to
be identified and controlled. The most prominent ones up to now have
been the following:

1} Mechanical perturbations from outside.

Motions of the ground either of seismical or technical origin as
well as acoustical noise are transmitted more or less to the in-
terferometer and thus give rise to signals. All relevant optical
components are therefore suspended as pendulums in vacuum. The
suspension point is formed by a mass, which in turn is suspended
by springs. There are several servo loops to damp the motion at
the resonance frequencies of the pendulums and to keep the inter-
ferometer at the desired position. The two stage pendulum suspen-
sion turned out to be sufficient for the present setup at frequen-
cies above several hundred Hz. If necessary, further stages may be
added.

2) Thermal excitations of eigenmodes.
If all mechanical excitation from outside is reduced sufficiently,
the thermally excited eigenmodes of the optical components become
visible. The corresponding amplitudes are orders of magnitude
above the acceptable level 1in an antenna for gravitational waves.
Unfortunately in a mechanical setup resonances are very 1likely to
show up just in the interesting frequency range around one kHz. By
a very careful design of the mechanical structure one has to
arrange all relevant eigenfrequencies above the frequency window
of observation. In addition, the internal mechanical damping of
the optical components has to be as low as possible. In this case
the thermally induced motion is mostly concentrated around the re-
sonance frequencies and the wings of the resonances, i.e. the con-

tribution at other frequencies, are kept low.

3) Frequency fluctuations of the laserlight.
Frequency fluctuations give rise to a signal in the interferome-
ter, when the pathdifference between interfering beams is not

zero. In a setup with delay lines such a pathdifference cannot be
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avoided easily, because of the difficulty of producing large radii
of curvature with high accuracy. For a delay line a particular ra-
tico between mirror distance and radius of curvature has to be cho-
sen in order to bring the output beam to a given position. There-
fore, a difference in the radii of curvature of the mirrors in the
two arms implies also a different mirror separation and thus a
different optical path.

Another mechanism to convert frequency fluctuations into inter-
ferometer signals is caused by scattered 1light, which finds its
way to interfere with the main beam and which may have a huge path
difference with respect to it. Up to now a careful two-stage
stabilization of the laser frequency could eliminate spurious
signals of this kind of noise.

4) Time dependent beam geometry.

The geometry of the laser beam like position, orientation and dia-
meter, fluctuates by tiny amounts; e.g. the position of the beam
may vary by about 10719 n on a timescale of milliseconds. Usually
nobody cares about such a small effect. However, in a not ideally
symmetric interferometer these fluctuations are converted into
signals; e.g. in connection with a small angle misalignment of the
beamsplitter. It is not possible to align an interferometer per-
fectly and keep it in this condition. Therefore a beam cleaning
device was introduced, i.e. either a single mode Fabry-Perot-reso-
nator or a single mode glass fiber. The laser beam has to be
matched to this particular mode. Variations in beam geometry can
be described as admixture of other modes, for which the beam clea-
ning device is not resonant. These other modes are therefore not
transmitted they are rather reflected, and only a small fluctua-
tion of the transmitted 1light power is produced. This does not
harm if as usual a nulling method is used in the measurement.

In the ¢Garching set-up it was possible to reduce the influence of all
these noise sources below the shot noise limit discussed in the fol-
lowing two sections. In the frequency window of interest between 500
Hz and 5 kHz the sensitivity is close to the shot noise limit of about
0.3 W, which is determined from the Poisson like photon counting sta-
tistics at the output of the interferometer. The strain sensitivity in
a bandwidth of 1 Hz is 10719, and correspondingly 3x107%2% in a band-
width of 1kHz. To increase the sensitivity one has to increase the
pathlength and the light-power.
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The pathlength can still be enhanced by a factor of 30, before half a
wave length of the gravitational radiation is reached; to get the re-
maining factor of 100, a lightpower on the order of 1kW will be neces-
sary. This might be possible by adding up coherently the beams of se-
veral strong cw-lasers and by making use of the output power of the
interferometer. In this so called recycling scheme the interferometer
is run at minimum output power in one output port; almost all of the
light therefore leaves through the other output port and can be added
coherently to the input beam. If the overall losses can be kept small,
a considerable lightpower can build up inside the interferometer.

On the other hand, a very high power density at the optical components
may introduce new problems. To increase the sensitivity of the detec-
tors, it would at any rate be very helpful, if the new approach to re-
duce the photon counting error by using squeezed states would prove to
be feasible.

V. Noise introduced by a beam splitter.

The optical beam splitter is an important part of any optical
interferometer and it is responsible for the Poisson-~type fluctuations
in the photon flux at the detector, also referred to as shot noise.
The understanding of the beamsplitter is essential for the proposed
application of nonclassical 1light fields towards improving the

interferometer sensitivityG).

Consider a semitransparent mirror which splits the incoming laser
radiation into two beams of equal intensity (Fig. 5). The number of

photons impinging onto the beam splitter per sampling time interval is
N. If the laser light is in a perfectly coherent state than the photon

noise is described by Poisson-statistics, J<ANin2> =J<Niﬁ>. In each
output port of the beam splitter one finds half the number of photons
<Ngut> = <Nj,>/2. As is well known the root mean squared fluctuations
do not reduce by a factor of 2 but by V2, ¢QANOUt2:’= J<Nin>/2. This
can be derived by a statistical analysis taking into account that each

photon can exit through either one of the two output ports but not
through both7).

The result of this statistical picture, however, does not readily
comply with the naive picture of the beam splitter, where both the
mean value and the fluctuations are cut down by a factor of 2. At
first sight the naive picture is not unreasonable since one deals with
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Fig. 5: Photon number fluctuations at the input and output ports of a
beamsplitter.

guite macroscopic fluctuations. For 1 Watt visible laser power and a
sampling time of 1 ms the root mean squared fluctuations are of the
order of V<AN®> =108 photons!

As Carlton M caves®) has shown, the factor of 2 missing in the naive
picture can be accounted for by recognizing that there is a second
normally not used input port to the beam splitter. Through this second
port at least the zero point fluctuations of the electromagnetic field
are coupled in if nothing else, These amplitude fluctuations are not
negligible since they are of the same size for a coherent and the va-
cuum state!

Both pictures of the beam splitter give the same result for the noise
and in both cases it is the particle nature of light which ensures
that the intensity fluctuations stay at the Pcisson level. In the
first picture the beamsplitter adds noise, because it statistically
sorts out photons and sends them one way or the other. The second
picture at first sight looks like a wave-type picture. However, the
zero point fluctuations entering through the second port are a direct
consequence of field gquantization. Therefore, also in this case the
added noise is a result of the particle nature of light. The second
picture although leading to the same result has a huge advantage over
the statistical approach. It tells the experimenter which knob to turn
in order to modify the shot noise limit.
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VI. The shot noise limit of an interferometer.

The second normally not used input port of the beamsplitter plays a
dominant role in the noise analysis of a Michelson-interferometer
which we show graphicallyg). Based on these results it will be
straight forward to see why squeezed light may improve the

interferometer sensitivity.

Fig. 6 shows a schematic diagram of a Michelson-interferometer, the
endmirrors are tilted so that the second input port is spatially sepa-
rated from the output ports. The fields entering the main (laser) and
the second input port are denoted K =Epcos (wt+&) and £ = Eg cos
(wt+ ¢) respectively. It is now assumed that the phases are near zero,
$x0=0, and that the amplitude of the laser is dominant, Ep >> Eg.
For an optical phase difference of A=x7/ in the two arms the two out-
put beams have nearly egual power I; = I,. Operating the interferom-

eter near this point, the difference of the two output powers I, - I,
may serve as the signal that contains information about the applied
strain. When calculating the fields in the two output ports one has to
take into account the phase shift at the beamsplitter. Independent of

o
m
®
hun §
Y

h—"
|

, TI :jsecond
- Z iinput port

Fig. 6: Schematic diagram of a Michelson-interferometer showing the

second input port of the beansplitter.

the type of beamsplitter these phase shifts can be obtained from a
time reversal or energy conservation argument. If two beams combined
by a beamsplitter interfere constructively in one output port they
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must interfere destructively in the other output port. In other words,
if the phase difference of the two interfering beams is ﬁ in one of
the two exits then it must be p+7T in the other one (see Fig. 4).

With the above definitions the fields in the two output ports are

E=3{Eysin{wt+#+4)+E1sin{wt+8)+Egsin{wt+e+A4)+Egsin(wt+étm) ] {3a)

By=3[Epsin(wt+#+A)+Esin(wt+8+m)+Egsin(wt+é+4)+Egsin(wt+e)] (3b)

The beam splitter phase difference 77 appears in one output port for
the Eg and in the other one for the E; - beams owing to the symmetry
in the geometrical arrangement.

We will now use the graphical representation in a phase diagram to
study the influence of phase and amplitude fluctuations on the signal
I, =-I;. In these diagrams the vectors representing the field
amplitudes coming back from both arms of the interferometer are shown
as well as their vectorial sum. Fluctuations in either of the two
amplitudes and phases are discussed separately. The results shown hold
of course only as long as the optical path difference in the two arms
is less than the coherence length of the laser light (see Sec. IV).

a) *Esin b) % Esin

4

Fig. 7: Phase diagram for the graphical determination of the electric
field amplitudes E, and E,; at the two outputs of the inter-
ferometer. Each field is decomposed into two parts, Eg;, and
Eoogr Oscillating in phase with sin t and cos t respective-

ly. The figure shows the influence of amplitude fluctuations

of the laserlight.
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1) Fluctuations in the amplitude Ej, of the laser field.

Fig. 7a shows the field vectors for the case Eg, § , and ¢ = 0 at
the point of operation A =7T/2. If there are amplitude fluctuations
of Ey, here represented by a positive excursion (small added vec-
tors) then also the resulting field amplitude Eq will fluctuate. In
the other output port the fields which have to be added are nearly
the same, the only difference being that the phase of one of the
recombined fields is shifted by 71 (Fig. 7b)}. Here the field vec-
tors span the same rectangle as in Fig. 7a. The magnitude of the
resulting field vector E, fluctuates like the one of E;. In fact E,
and E, correspond to the two diagonals of the parallelogram they
span. Since for a rectangle the length of the two diagonals is the
same, the difference in the photo currents I, - I, = E22 - 312
stays zero irrespective of the amplitude fluctuation of the laser.

2) Fluctuations in the phase ® of the laser field.

A phase fluctuation is represented by a small vector of length
E;, § which is added at right angles to the main fields (Fig. 8a,b).
The sign of these small vectors follows from Egs. 3a, b. Again one
finds that the field amplitudes at the two outputs correspond to
the diagonals of the same rectangle and Ey = E, . Consequently,
the signal 1is also indepent of phase fluctuations in the laser
field.

a)

Fig., 8: same as Fig. 7, but influence of phase fluctuations of the
laserlight.
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Fluctuations in the field amplitude E; at the second input port.
The sign of the small vectors representing the amplitude fluctua-
tions of Eg have to be traced carefully. Fig.9%a and b show that, as
before, the output fields E, and E, fluctuate in correlation as to
cancel out the corresponding photocurrent fluctuations, I,~I, = 0.

b} Esm

ECOS

‘a__——'—

Fig. 9: same as Fig. 7, but influence of amplitude fluctuations at

the second input port.

G) 1Esin b) “Esin
\ A
\ \
BN
\ \
\\\\\I ECOS \\ \\\: Ecos

\

\ E; \

\ \

‘qu \

\\\ \

Fig. 10: same as Fig. 7, but influence of phase fluctuations at the

4) Fluctuations in

second input port.

the phase ¢ at the second input port.

Finally there is a type of fluctuation which produces noise in the
signal The resulting field vectors span a parallelogram
which is not a rectangle, I, - I, ¥ O( Fig. 10a,b). A quantitative

evaluation of Egs. 3a,b yields the noise in the signal

I, - I;.
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(Iz—Il)noise « 2¢ESEL7 for ¢¢1 and Eg(EL

The term ¢-ES represents the amplitude fluctuations in the cosine part
of the field at the second input port

(I.-I:)noise © 2ELY<AEg, cos?>

In units where the field amplitude is given by the square root of the
photon number, the guantum mechanical rms-~fluctuations of a coherent
field are <AES'COS2 = 1/2. The size of these rms - amplitude
fluctuations are independent of the meanfield and are the same as for

the vacuum field.

The noise in I, - I, determines the sensitivity with which the optical
Phase difference A =7/2+%¥ and hence the optical path difference in
the two interferometer arms can be measured. It has to be compared to

the signal (I,-I))signal © ¥ EL?

For EL2 = n photons in the laser mode one finds the gquantum limit for

the phase sensitivity to be

N S BV ™

(6¥)min = 2V<8Eg cos®> / ¥ n

This corresponds to a smallest detectable mirror displacement of
(68)min = 2(6¥)pin/(4m)

In the case where the field at the second input port is the vacuum or
a coherent state, the fluctuations are AEs,cosz> = 1/2, which yields
the usual shot noise limit

(68)pin = A/ (4m n)

VIi. Improving the interferometer sensitivity using squeezed

states.

The discussion 1in Sec. VI illustrates that the noise in the signal is
due to only one out of four possible noigse sources 1i.e. the
fluctuations at the second input port out of phase with the main laser
field. This explains why light in a squeezed state with\£AES’cosz><1/2
coupled into the second input port should lead to a displacement sensi-
tivity better than the shot noise limit.
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The fact that Heisenberg's uncertainty relation requires the in-phase
amplitude fluctuations at the second input port to be correspondingly
1arger,W$Es,sin2> > 1/2, does not harm since the signal is not sensi-
tive to these fluctuations as discussed under point 3) in Sec. VI.

The sensitivity increase that can be hoped for is of course limited.
Ultimately there is a limitation caused by fluctuating photon pressure
on the mirrors since the latter is enhanced when using squeezed
states. Apart from that there are some technical considerations. Un=-
like coherent or thermal 1light fields, squeezed states change their
characteristics under linear attenuation towards that of a coherent
state. Therefore, it is essential to have a photodetector guantum ef-
ficiency as close to 100% as possible and to avoid losses. It also
turned out that a visibility less than one critically 1limits the sen-
sitivity gain to be expected when using squeezed statesl0). Neverthe-
less, 1t is reasonable to hope for a sensitivity which can otherwise
be reached only for a 5 to 10 times higher laser power. In view of the
high laser powers which are aimed at, the squeezed state technology
looks promising and viable.

References

1. D. Shoemaker, W. Winkler, K. Maischberger, A. Riidiger,
R. Schilling, L. Schnupp: Proc. 4th Marcel Grossmann Meeting
on General Relativity and Gravitation, R. Ruffini (ed.),

pp. 605-614. Elsevier Science Publishers 1986.

2. X.S. Thorne: Rev. Mod. Phys. 52, 285 (1980).

3. P. Kafka: Naturwissenschaften 73, 248 {(1986).

4. H. Billing, P. Kafka, K. Maischberger, F. Meyer, W. Winkler:
Results of the Munich-Frascati gravitational-wave experiment,
Lett. Nuovo Cimento 12, 111-116 {1975).

5. P.F. Michelson: The low temperature gravitational wave detector at
Stanford University, T. Piran. North Holland Publ. Co., 465-474
(1583).

6. C.M. Caves: Phys. Rev. D23, (1981).

7. R. Loudon: The Quantum Theory of Light, Clarendon Press,

Oxford 1983.

8. C.M. Caves: Phys. Rev. Lett. 45, 75 (1980).

9. G. Wagner and G. Leuchs: Laser und Optoelektronik 1, 37-44 und
52 (1987).

10. J. Gea-Banacloche and G. Leuchs: "Applying Squeezed States to
Non-Ideal Interferometers" (to be published).



"QUANTUM JUMPS" OBSERVED IN SINGLE-~ION FLUORESCENCE

Th. Sauter, R. Blatt, W. Neuhauser,
and P. E. Toschek*
Universitdt Hamburg, D-2000 Hamburg, Fed.Rev.Germany

Abstract

We have demonstrated that interruptions of macroscopic duration ap-
pear in the 493~nm fluorescence of a single trapped and cooled Ba® ion.
They are caused by sudden transitions of the ion into the "dark” 2D5/2
state. - Multiple simultaneous jumps of three ions indicate cooperative

interaction with the light.

Introduction

The canonical interpretation of quantum mechanics attributes calcu-
lable expectation values to statistical mean values of variables. With
conventional measurements in atomic physics, large ensembles contribute
to the measured guantity, and averaging is inherent to the act of meas-
urement. If a single particle is observed and evolves on a time scale
fast compared with the time of resolution of the measuring device, we
invoke ergodicity to expect time averages as the result of the meas-
urement. However, if time resolution is good enough, we have no safe
prediction for the evolution of the atom to be cbserved in "real time".
According to Bohr's model of the hydrogen atom [1], atoms undergo in-
stantaneous transitionsfrom one eigenstate of energy to another one
upon interactions with the radiation field. It is certainly conceiv-
able, on the other hand, that even with fast and repeated single-atom
detection, only time-averaged quantities are meaningful results of the
measurement. Conseqguently, quantum-mechanical superposition states might
depict individual atoms even on the small time scale set by the sequence

of measurements, i.e. they might be "real".

This alternative is open to decision by experiment. Recently, the

preparation of single, cold atomic particles - ions -~ in specified in-

* Also: JILA, University of Colorado and NBS, Boulder, Colo. 80309, USA
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ternal and external states has been demonstrated |2-4

. Ensemble aver-
aging, unavoidable in conventional measurements, is absent in experi-
ments with single atomic particles: these experiments allow, for the
first time, direct proof of one of the most basic concepts in guantum
mechanics by repeated identical preparation and observation of an in-
dividual atomic system. Intuitive arguments predict that transitions

on a very weak line are detectable via the excitation of resonance flu-
orescence on a strong transition coupled by a common level |5|. when
such a rare transition, say, an absorption event, occurs on the weak
signal line, the flucrescence on the neighbouring line is supposed to
be guenched since the atom - or ion - in the upper, metastable level

of the weak line is no longer available for the fast excitation and flu-

orescence cycles,

These conclusions have been confirmed by rigorous guantum-statis-

tical calculations |6-11|. They show that interruptions in the fluo-
rescence are expected which are on the

6 Py s order of the lifetime of the metastable

B(i+ level. These "dark" or "off" periods are
6 "Pis the signature of guantum Jjumps; they have
2 been observed recently |[12-15|. In our
4554 S D5/2 +
52Dy experiments |[12,15}, a single Ba ion is
63, localized in an electrodynamic ion trap
and optically cooled to less than 10 mK
Fig. 1: Simplified energy §16,17]. The relevant energy levels of

level scheme of Bat, Wave-

; Ba' are shown in ¥ig. 1. Resonance fluo-
length values in nm.

rescence is excited at the 493-nm line

with a cw laser, and a second laser beam at 650 nm couples the ?D3/2

level to the continuously excited QPI/; level. When the ion, once in a
while, drops into the 5 205/2 level - upon laser-pumped electronic

Raman-Stokes transitions -, the fluorescence becomes suppressed. Thus,
the transitions into and out of the "dark” 5 205/? state are observed
with 100% detection efficiency, and with time resolution which corre-
sponds to the mean time separation of the photoelectron counts of the

fluorescence signal.

Experimental

A thermal beam of barium atoms is ionized by impact with 1-s pulses
of a very weak electron beam. After several unsuccessful attempts to

generate an ion, eventually green fluorescence signalsthe apprearance
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of a Ba* ion in the center of the 1-mm trap, where the foci of the two
Coaxial laser beams are located. One beam is generated by a cw Cou-
marine—-102 laser, the other one by a cw DCM laser. The green laser is
down-tuned from resonance by 150 MHz for optimum cooling the ion, where-

as the red iaser is kept at the center of the 6 2P1/2 - 5 2D3/2 line.

The fluorescence signal is detected by a microscope, cooled photo-

multiplier selected for low dark current, and a photon counter.

An additional Ba hollow cathode lamp permits us to weakly excite the
6 2P3/2 level from the ground or 5 2D3/2 metastable states 1131, and a
third laser at 614 nm serves for the selective release of the ion from

the "dark" level.

Interrupted Fluorescence

Fig. 2 shows a recording of the ion's fluorescence at 493 nm. The
mean “"on" time T, is 136 s + 13 s, determined by the probability for

off~resonant Raman-Stokes transitions (via 6 ng/z) excited by the green

=)
& 2 87 Fig. 2: Recording of the
bt g 3 laser~excited fluores-
&3 cence, at 493 nm, of a
%'ﬁ 04 single Ba® ion.
LJ.: T L T T

0 100 200 300 400 sec

and red laser light at 60 and 10° fold saturation of the respective
transitions Zslfz - ZPlfz and 2D3/2— 2?1/2 (Fig. 3). The mean "off" time,
T_ = 8 s, is dominated by Raman anti-Stokes transitions. There is also
a gmall contribution from collisionally quenching the "dark" state

5 D52

Irradiation with the light of the Ba hollow cathode lamp excites the
ion to the real 2P3/2 level with a chance to decay into the "dark" state
that is higher than for the far off-resonant Raman excitation. Thus,

this irradiation reduces the mean "on" time to 24 + 4 s.

For unambiguous identification of the "dark" state, we have irradi-
ated the ion by additional cw laser light at 614 nm corresponding to
the 5 *Ds/, ~ 6 ’P3/, transition. When a 0.4-s pulse is applied after
the observed fluorescence went off, the jump is immedlately undone by

re-excitation, and fluorescence reappears (Fig. 4). With continuous
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irradiation, no jumps appear at all, since the 2Ds/z level is coupled
to the superposition of levels which forms the "on" state. This kind
of manipulation or "shelving prevention" represents the active control
of an internal degree of freedom of the ion,

From recordings of the fluorescence signal as in Figs. 2 and 4, the
two-time intensity correlation has been calculated. There are predic-
tions of this quantity |9,10|: a superposition of two exponentials, one
fast and one slowly decaying, which correspond to the strong and weak

»n
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E
Sennrbemeeds
2
L

Fig. 4: Single~ion "on" and "off" in-
tervals of fluorescence (top). Remov~
ing the ion from the "off" state (?Ds/.)

[+]

(4, center}). Coupling the *Ds/2 level
to the "on" state by continuous 614 nm
E laser light, which results in "shelving
VI el iatedinanion nganan prevention" {(bottom}. Full length of

N uninterrupted fluorescence recording:
20 min. (From Ref. 15)
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200
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transitions, respectively. Only the latter one is observable with the

0.4-s experimental sampling time, and the corresponding modified ex-
pression becomes

2 T -l -1
SL(ENI(t + T)> / <I(8)>? = 1 + = exp [~ (1= +14 ) 1]

Fig, 5 shows two-time intensity correlations with and without exci-
tation of 2P3/2 by coherent light. They are in agreement with the val-

2 o "T"*'}]"T*T by manually pulsed laser light at 614 nm

f
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Fig. 5: Two~time intensity correla-
tion function calculated from fluo-
rescence recordings with laser exci-
tation only {(lower trace}, and with
7 additional lamp excitation of the
2P3/2 level {upper trace). The oscil-
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™ d T latory feature indicates the exist-
0 20 40 60 ence of population pulsations.
TME INTERVAL T (SEC) {(From Ref. 15}

ues of 1, and 1. derived from the distributions of "on" and "off" times.
The total rate T, ' = 7T,' + T_.' is dominated by T_'. The combination of
2P,/2 excitation and subseguent decay into the 2D5/2 level with anti-
Stokes back pumping forms a cyclic process which shows up as modulation
of the intensity correlation function (s. Fig. 5), the signature of
ponulation pulsations. Note that without excitation of the 293/2 state
by incoherent light the generalized Rabi frequencies at the pump and
Stokes transitions, and also the effective two=-photon Rabe frequency,
are very large due to the lasers being detuned far off the transitions

involving the *P;,, relay level |18

. Thus, the population cannot adi-
abatically follow, and it does not pulsate.

Single~Ion Spectra

Excitation spectra of single-ion fluorescence have been recorded by
scanning the 650-nm light across the *P;/, - *D;/, resonance and detec-
ting the green scattered resonance light |19]. With a well-cooled ion,
these spectra show sudden reduction of the signal, when the up-scanned
light has crossed the line center. This phenomenon is caused by opti-
cally heating the ion, i.e. making its orbit grow }ZOI. With a rather
hot ion, this effect‘is negligible, and occasional transitions of the
ion into the dark 2Ds/z state unambiguously reveal themselves as breaks
in the spectrum {(see Fig. 6). Since the ion moves most of the time far
Off the trap centre, it feels the rf electric drive field, at 35 MHz,
which considerably modulates its speed. The well-known narrow resonance
on the low-frequency wing of the spectrum which is generated by electro-
Nic Raman transitions, 251/2 - 2DJ/,, develops conspicuous motional
Sidebands.
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FLUCRESC.RATE (10° COUNTS JSEC)

ion vs. frequency of 650-nm laser. Interrup-
tions {centre and right} mark gquantum jumps.
Raman resonance {left) shows motional side=
bands (top). Freguency marker: 20.8 MHz/
fringe (bottom).

h hw\
M

ﬁAﬂ Fig. 6: Fluorescence signal of single hot

FREQUENCY OF 650-nm LIGHT ——
Multiple Jumps

The fluorescence of a small cloud of three ions shows four discrete
intensity levels corresponding to three, two, one, or no ions in the
"on" state (Fig. 7). Upon inspection of the recorded traces it is obvi-
ous that simultaneous jumps of two or even three ions happeh much more
often than expected as random coincidences. This phenomenon has been
substantiated by guantitative evaluation of the rates of random multiple
jumps }15}. It turns out that the observed rates exceed the random rates
by more than two orders of magnitude. This observation indicates that
the ions interact collectively with the light fields. Moreover, this
collective action does not require ensemble averaging in order to be-
come detectable as in conventional experiments on super-radiance |21].
It involves real coupling of individual particles, as is proved by the

huge excess of simultaneous jumps. Macroscopic collective phenomena, on

FLUORESC.RATE {10° COUNTS/SEC)
N

0 . . . — Fig. 7: Multiple jumps documented in
[ 40 80 120 160 200 the laser-excited 493~nm fluorescence
TME (SEC) of three Ba' ions. (From Ref. 15)
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the other hand, are described in terms of enhanced probability for a
microscopic process as caused by the presence of the entire ensemble,

Conclusions

We have observed interruptions of random time duraticon in the fluo-
rescence of a single Ba* ion stored and optically cooled in an electro-
dynamic trap. The mean duration of the bright and dark intervals has
been evaluated for the ion interacting with two resonant laser beams,
and also for additional excitation to the 2P3/2 state by incoherent
light. The 2Ds/z level has been unambiguously identified as the "off"
state by re-exciting the dark ion to the 293/2 state in order to make
it join the "on" state - a superposition of ’Sl/z, *Pi/2, and Dy ; -
again. This procedure establishes "guantum-manipulation" of an internal
degree of freedom of a single atomic particle. The observed two-time
intensity correlation function agrees with the time distributions, and
indicates the existence of population pulsations. Three trapped ions
show simultaneous multiple jumps at a rate vastly exceeding random co-
incidence. The cloud interacts collectively with the light by coupling
the individual particles.

The novel type of measurements exercised in these experiments does
not rely on ensemble averaging. Instead, one particle is prepared under
specified conditions over and over again, and a very large number of
individual measurements is carried out - essentially one measurement
for each photoelectron counted.

This approach has allowed us, by proving the existence of macroscopic
pauses in the single-ion fluorescence, to verify that the dynamics of
single atomic particles is governed by sudden transitions. They are not
artifacts of the temporal discreteness of the measuring process. They
do not establish, on the mircroscopic time scale, statistically averaged
P opulations in states. Rather, they make an atom indeed occupy a par-

ticular state for a time interval on the order of its lifetime.

This work was supported by the Deutsche Forschungsgemeinschaft. -
One of us (P.E.T.) thanks the JILA Visiting Fellows Program for support.
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MACROSCOPIC QUANTUM JUMPS

Axel Schenzle
Fachbereich Physik, Universitét Essen

4300 Essen, West Germany

Abstract

When an electron is prepared in a metastable state, it will remain there for some
period of time, until it eventually jumps back to the ground state by the emission
of a resonant photon. This event can be monitored conveniently by coupling the ground
staté to a dipole allowed state through a resonant laser field. Then the return of
the electron from the forbidden state manifests itself in a sudden appearance of
fluorescence from the allowed transition. When the forbidden transition is being
driven resonantly as well, the fluorescence will be quenched again, while the elec-
tron returns to the forbidden level. If this intuitive picture is basically correct,
then it is possible to monitor the individual quantum jumps, which are accompanied
by a single photon event only, by the random appearance and extinction of a strong
fluorescence signal - by a macroscopic signal. This process is a unique single atom

phenomenon which is washed out gradually, when more and more particles participate
in the scattering process.

1. Introduction

——————

Quantum mechanics without any doubt is one of the corner stones of our present
day understanding of fundamental processes in nature. But even after more than 60
Years since the formulation of the concept, we still have - now and then - our
difficulties with quantum theory. It is not the application of the formal apparatus
to some specific problem which is bothering us, it is the lack of an intuitive view
which can leave us puzzled when considering a new gquantum phenomenon. One may argue
that intuitivity is not a relevant ingredience of theoretical physics - all that is
Necessary is a consistent theory, which allows one to predict the outcome of any con-
Ceivable experiment in a satisfactory way. This view is correct as long as a well
defined physical question is formulated and waits to be answered theoretically. How-
®ver, in order to come up with new ideas, and to suggest new experiments, experi-

Ments where the quantum nature of the processes dominates the dynamics, we have to
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rely on intuition first, in order to motivate a subsequent analytical treatment of
the quantum problem.

Intuition has to do with experience and therefore can be acquired to a certain
extent. In the special case here, it seems that experience can be obtained by cen-
sidering a number of simple and transparent physical examples, where the quantum
nature of the process is essential for its understanding. Experiments on a small
number of atoms, or even on single particles are the least likely to disguise the
underlying quantum mechanical nature and its subtleties that may otherwise be
washed out by the average over a large ensemble. In the field of quantum optics e.g.
single particle experiments have become available recently either through weak
atomic beams (1,2), or by the use of ion traps (3,4), and the Jaynes-Cummings model
(5,6,7), as well as Anti-Bunching (1,2,8,9,10), two fundamental single particle

quantum effects, have already been realized experimentally.

The early quantum mechanics of Bohr was able to predict the stationary proper-
ties of the hydrogen atom i.e. the energy levels with great accuracy but the dyna-
mics had to be introduced artificially, by introducing the concept of sudden jumps
among these eigenstates, the Quantum Jumps. This ad hoc assumption, which had no
counterpart in the dynamics of the Schrddinger equation caused a vivid controversy
in the early days of quantum mechanics. The discussion finally subsided long ago,
since the adoption or rejection of this concept was felt to be more a matter of taste
since there had been no conceivable experiment that could demonstrate the discon-
tinuous fashion of these transitions. The main reason being that all experiments
until now dealt with an enormous number of particles, and all individual jumps would
tiave been smeared out by the average over the ensemble. Spontaneous emission of
a collection of atoms results in a continuous signal on the photon detector, even
if one insists that the signal is made up from a discrete number of individual
events.

The progress in experimental techniques over the last years, which could cer-
tainly not to be anticipated in the early days of quantum mechanics, now makes it
possible to perform experiments with just a single particle. In which way would
fluorescence from a small number or even a single atom be substantially different
from fluorescence at an entire ensemble of atoms. Obviously, whenever large fluc-
tuations are expected to occur in the single particle experiment, they will be
averaged out completely in the experiment with a fluorescing gas, and noise is mini-

mized due to the presence of many atoms:

In a single atom experiment this averaging does not occur, and we can expect to

see a signature of the quantum fluctuations which are responsible for the spontane~
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ous decay. When a dipole allowed transition is driven in saturation, up to 1078
photons per second might be scattered and the photon multiplier will produce a con-
tinuous signal and no traces of the individual counting events are visible. A di-
pole forbidden transition on the other hand may typically produce a single scattering
event per second, a signal that is ungquestionably way below the noise level of the
detector. The only way to combine the high intensity of the allowed transition with
the convenient time scale of the forbidden one is to consider a three level con-
figuration. This shelving idea that was first suggested by H. Dehmelt (11) as a
means of performing high resclution spectroscopy, would have gone almost unncticed
if Cook and Kimble (12) would not have pointed out the fundamental character of this
effect and its relation to the guantum measurement process.

Dehmelt suggested a three level system in V-configuration, where the ground state
is coupled to an allowed as well as a forbidden excited state which are both driven

resonantly by two individual laser fields as indicated in Fig. 1.

Fig. 1

The ground state is connected with two excited states via en allowed transition
{3> -~ 119 and a forbidden transitionl2® -- i17. The corresponding life times are § ,
and ¥;' . The two transitions are driven by their respective laser fields at rates

R, and R,.

1 2

The transition frequencies are supposed to be well separated, such that the fluores-
cence signals can be spectrally resolved and the competition of these two transi-
tions will result in a unique feature of the fluorescence signal. At first glance

it seems to be quite evident that the electron, when driven along the allowed tran-
sition, will emit intense fluorescence of frequency W1, which, is duenched even—
tually, when the electron is being shelved in the forbidden state. The resulting
period of darkness is expected to last for a life time of this state, and the spon-
taneuous return of the electron to the ground state will trigger the strong fluores-
cence again. Thus, also the atom is driven in a purely continuous fashion, it is
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expected not to respond continuously, but the strong fluorescence from the allowed

transition is interrupted at random time instances by random periods of darkness.

This is just one of those examples mentioned above, where we have been relying
entirely our intuitive understanding of quantum mechanics in predicting the out-
come of a new experiment. The tacit assumption made, however, was that in any in-
stance of time, the atom can only occcupy a single energy eigenstate. A mixed guantum
mechanical state described by a statistical operator with vaenishing off - diagonal
elements, might well be described intuitively by atoms that only exist in eigenstates
at a time, however, quantum mechanical superposition states cannot be viewed in this
way. Since the atom is driven coherently, one may argue that the coherent super-
position state is closer to physical reality than the incoherent mixture. Loosely
speaking, in a superposition state all the levels are occupied simultaneously and the
prediction of random jumps just on intuitive grounds is much less obvious. Since we
are dealing with an interesting and fundamental problem, a detailed quantum statis-
tical treatment®is in place in order to resolve the question such that no doubts
about the nature of the process remain. This can only be done when we do not assume
a priofi that the quantum jumps exist (12,13), and only describe their statistical
properties, but prove their existence in a first principle calculation (14,15).

When we try to devise a theoretical description of this process, we tend to be a
little irritated by the fact that quantum mechanics is a statistical theory based on
the concept of ensembles and ensemble averages, a concept which at first sight can-
not be applied to a single particle experiment. An individual trajectory like the
temporal fluctuations of the fluorescence intensity I(t} cannot be predicted theore-
tically in its actual time dependence. Only the average over many repeated and identi-
cally prepared experiments represent an ensemble and can be compared with theory. In
the present case, an ensemble average over the single particle trajectories inevi-
tably averages over the random dark periods, and leaves us with a constant mean in-
tensity. To be a little more specific, let us consider a three level system driven
in saturation by both resonant laser fields, then the average fluorescence intensi-
ty of the strong transition is given by:

{Iwy =" ¥,

where d: is the corresponding spontaneuous life time. This is to be compared with the

intensity obtained in a single run, which is expected to be:

Iy =% 3,

during the emission period and zero in the dark times. When we assume that the
emission period lasts twice as long as the dark time, then a time asverage over the

stochastic signal is identical with the ensemble average above. Needless to say that



123

the ensemble average of the intensity alone does not say anything about the exis-
tence of the quantum jumps.

This situation, howsver, is not at all different from what we know from classi-
cal statistical mechanics. The Brownian particle e.g. traces out complicated and
entangled trajectories in phase space, which cannot be predicted theoretically in
any detail. The average coordinate e.g. remains at its initial value and does not
display any sign of the random evolution. But in classical statistics we can do
better and calculate higher order moments that contain more statistical information.
Instead of calculating the entire hierarchy of moments of the coordinate x we can

also cvalculate the-probability density in spsce, as it evolves in time:

Pex,t)

This function is obtained as the solution of a Fokker Planck equation and contains
the entire statistical information of the process, provided the Brownian motion is

suitably described by a Markov process -~ and there is nothing more that one can say
theoretically about the process.

Also in quantum mechanics we can do better than merely calculating the average
over the basic variables, like the intensity in our case.here. We can also calcu-
late variances and cummulants of higher order, and describe the statistics in in-
creasing deteils. Instead of the moments of the intensity we could also calculate

those of the photon counts detected in a given collection period T:

<Ny, <n*>, ..

The entire hierarchy is contained in the photon counting probability W(n,T) i.e.
the probability of observing n events in a collection time T:
00
. _ 4
<n®> = Z_ n® Winr)
nao
In case that we can show that this probability allows us to distinguish between

smooth or intermittent fluorescence, a quantum mechanical calculation of W(n,T)
would provide the required first principle evidence of the existence of quantum
Jumps.

2. Correlation Functions

The electromagnetic field, as created in any elementary process is subject to
fluctuations, which may result from thermal noise in the source. The quantum nature
of the source and the field is an inevitable source of fluctuations, which makes it
necessary to use a quantum statistical description. We will restrict ourselves to
the mode picture, and disregard all spacial properties of the field, Ei(t)’ E;(t)
is the quantized form of the field amplitude of frequency GJ{, and we will con-

sider here only its stationary properties. One way to characterize the statistical
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fluctuations of the light field in increasing detail is to set up the hierarchy of
normally ordered correlation functions (16,17).

The most elementary correlation function that does not already vanish due to the
phase symmetry of the field is given by:

[ £
G-)(t) =<E-(t)E7£0)> = '{Ir?E'(‘E)E:(o)
which for t=0 represents the average intensity, @ is the statistical operator of the
ensemble. The temporal correlations characterized by G (t) display the loss of co-
herence due to phase fluctuations. The amount of randomness in the field intensity

is measured by the-following correlation function (18,19) which is not sensitive te

phase noise:
2) + +
G () = CEjoE o Ei ) Ejo

Intuitively speaking, Gﬁ}%t& is a measure for the probability of observing a photon
of frequancycqiat t=0 and ancother photon of frequency J;a time t later. The corre-
lation of these events characterizes the fluctuations of the field intensity. From
the. definition of G U (t) it is convenient to construct a conditional probability

in the following way:
( )

B = Gij /G, ®
where P;} {t) is the probability of observing a photon of frequency w;at time t,
after a photon of frequency w; had been detected with certainty at t=0. Since we
are only looking at two chosen instants in time and not at what has been happening
in between, P;s (t) provides only an incomplete picture of the process, and it is
natural to proceed to correlation functions of higher order. Pyj (t) only provides
the information that there are photons of frequenoycqh and &W;at t=0 and t respec-
tively, but-not whether there had also been emission events in between, i.e. P does
not guarantee that the observed photon ¢z at t is the first to be detected after the
observation of the photon at@);.

Before we procede to discuss the hierarchy of photon correlations in the next
chapter, we want to demonstrate here that the intensity correlation function already
contains enough information to give us a hint, whether it is realistic to expect the
quantum jumps or not. For this purpose we compare the two photon correlation function
of the driven three level system, with the corresponding and well-known two level

result.

In order to keep the calculations simple and for most of the time in analytical
form, we assume for the moment that the ‘dynamics of the atomic system can reasonably
be characterized by rate eguations.



125

The electromagnetic field is created by the oscillating dipoles:

E'y ~ P , E@w ~ P )

where P‘13* is the operator of the atomic polarisation, and t and £’ differ by the
time of propagation from the source to the detector (20,21). The dynamics of the
field is thereby traced back to the Bloch dynamics of the atomic source. With the
help of the quantum regression theorem (22) we are able to calculate all desired
correlation functions provided that we know the general solution of the corres-
ponding Bloch equations for arbitrary initial conditions. Using the notation ex-

plained in Fig. 1 we find for the tree level system the following auto-correlation

functions: 3
1 -3 &t -240t
R =§(1+-}(e2"-3e ")

and
3
7) — 1 ( | - -2 fat
20 T 3 e
For the cross correlations we find the same results as above, depending on the se-
quence of observation.

P, (1Y = P )

R (t) = B, (¢)

In case the weak transition is not driven, we are left with a two level system
which is characterized by:

! -2.3
R = 3(1-e %)

P, (t) is compared with Ft: (t). At a first look there is already a significant
difference between the correlation of the strong fluorescence in the presence and
the absence of the weak transition. While P;(t) is @ monotonously increasing func-
tion, Pu {t) follows the same functionality only over the short time scale and fi-
nally decays towards the uncorrelated result on the long time scale of the meta-
stable state. We will see that this hump in Fig. 2 is a typical indication of the

appearance of random dark times.

The conclusions that can be drawn from these four correlation functions are
summarized .in Fig. 3. Assuming that the fluorescence from the tree level system is
intermittent, we have sketched in the upper part the strong emission from the
allowed transition and have indicated schematically the individual emission events -
equidistant for convenience. The lower part symbolizes the weak emission from the
forbidden state. We expect the dark time to last for a life time of the metastable

state U;‘. In case of saturation, the period of emission must then last for about
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Fig. 2

Conditional Probability of observing two photons of frequency &) a time interval t
apart. The solid line indicates the saturated three level system, while the dashed
curve represents the saturated two level case. The rates had been chosen ¥ /{3=10"6.
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Fig., 3

Intermittent fluorescence from the strong transition is shown in the upper part, wher®
the small lines symbolize the individual photon evaents in the bright periods. The
lower half correlates the spontaneous emission events from the forbidden state with
the periods of emission and darkness.
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twice that period in order to yield the correct average intensity. The length of
the individual fluorescence and the dark periods, however, will fluctuate randomly
about these average values.

P, (t) rises from zero on = time scale K:‘, the average time between the emission
events, indicating that two photons are not likely to be emitted arbitrarily close
to each other - this is well-known under the name of anti-bunching. In order to see
the first photon with certainty, t = 0 must lie inside an emission period, which it-
self lasts roughly for the life time of the metastable state. It is very probable to
find another photon a time t later as long as 8:2 t< 3;’ . On this time scale the
emission is expected to be identical with the two level fluorescence. Only when we
search for the second photon, at times t )'z;'after the first one, it is more and
more likely that the instant t falls into a dark period and no signal is registered.
This is indicated by the deviation of the correlation function from the two level
result, and the drop in probability. The humped correlation function can therefore be
understood qualitatively using the picture of intermittent fluoreascence.

Qu'(t): When the electron returns from the metastable to the ground state it is
most likely driven up to the allowed level which marks the end of a dark period, and
the strong fluorescence signal reappears. Therefore, shortly before the beginning
of this signal, a photon of the weak transition must have been emitted, roughly a
time xf'earlier. Since the times of reappesrance of fluorescence are approximately

-l
83 seconds apart, it is very unlikely to see a second photon of frequency W, earlier
than t ~ ¥

2 -
Fﬁz (t) characterizes the conditional probability of observing a photon of frequency
W, 8 time t after a photon of freguency ), had been detected. Since the emission from
the forbidden state triggers the strong flucrescence, this probability rises on a
time scale [;‘ and will fall off agsin on the long time scale K;{ Since the photon
atoaz is emitted very close to the beginning of the fluorescence period it doesn’t
really matter which of the photons had been detected first, it is only tha last one
which characterizes the correlation and therefore it is rather obvious that P‘z(t)
=Py (t).

P,, (t): A photon of freguency W), is emitted in the bright periods, while the photon
from’ the metastable state is emitted at the end of the dark period, therefore we have
to wait at least a time X;: until the conditional probability P,, (t) rises appreci-
ably from zero.

The correlation functions so far do not prove, but strongly support our intuitive
picture from an intermittent fluorescence signal. In order to show that the statis-

tical properties of the emission are uniquely related with a signal that displays
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random sequences of emission and darkness, we have to procede to higher order
correlation functions or to an equivalent statistical description. This will be

done in the next chapter, by deriving the photon counting statistics of the process.

Before proceding that way, this might be the place to clarify the use of rate
equations in describing the quantum jumps, since earlier we had been somewhat puzzled
by the role of coherent superposition states. It is correct that an ideal coherent
laser field will drive an atom into a state of superposition, and off - diagonal
elements of the statistical operator don’t vanish. But this superposition or phase
memory will only last on the a time scele of the relaxation time, since the event
of spontaneous emission prepares the atom in its ground state and the phase infor-
mation is completely lost. It will be established again, without relation to the
previous coherence, in a Rabi cycle and will be lost again in a subsequent spon-
taneous emission act. For an ensemble of atoms, as described by the Bloch equations,
we always prepare a macroscopic numbar of atoms in a superposition state, which is
responsible for the macroscopic coherent polarisation. Individual atoms drop out
from this collective coherent state in a spontaneous emission event, and are brought
back in a Rabi period by the action of the laser field.

Since we are dealing with a stationary ensemble, dissipation is inevitable in
order to establish this state. ‘Stationarity is only reached after many relaxation
times, and the phase memory has decayed long before. We conclude from here that the
distinction between mixed states and pure superposition states, intuitive to some
extent, was somewhat artificial and misleading in this context, because it did not
account for dissipation, something that is vital for.the observation of fluorescence.
Therefore we expect that this distinction is not really essential, and the presence
of coherent Rabi oscillations will only alter the picture quantitatively, but the
basic conclusions will simply carry over from the picture of a rate process. To
sypport this view, we have calculated the two-photon correlation function for co-
herent driving, by diagonalizing the 9 by 9 matrix of the three level Bloch equations
and find typically the behaviour sketched in Fig. 4, where the two level and the
three level correlations are compared. As expected, the two traces coincide over the
short time period where anti-bunching and Rabi oscillations occur but deviate later.

The "hump" again is clearly visible and indicates the appearance of dark periods.

3, Photon Counting Statistics

One way to determine the statistical properties of light is to count the number
of photons that fall on a detector in a given time interval 7. Due to the discrete-
ness of the photon counting events, the results will fluctuate randomly and dis-
play Poissonian statistics. This is the randomness introduced solely by the de-
tection scheme. The fluctuations of the field intensity itself will be superimposed
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Fig. 4

Conditional probability as in Fig. 2 but with coherent driving fields (solid curve)
in comparison with. the corresponding two level case (dashed curve).

and cause an additional broadening of the counting distribution. The intrinsic sta-
tistical properties of the light field have to be derived therefore from the de-
viation of the actual counting distribution from the ideal Poissonian one. A co-
herent field with its stabilized intensity is Poissonian, and one might expect that
additional fluctuations of the intensity can only result in further uncertainty and
therefore in broadening. This is correct when we describe the field in terms of
classical electro - dynamics. However, the fluctuations characteristic of quantum
fields can either broaden or squeeze the statistical distribution from the ideal
Poissonian result, a feature that is not easily understood on intuitive grounds. The
Sub - Poissonian statistics of rescnance fluorescence is a unique quantum effect
{23,24) which has been observed experimentally (25,10).

The quantum mechanical photon counting distribution has been derived by Glauber
(26) and by Kelley and Kleiner (27) from a first principle consideration of the
source, the emitted field, the detection process and their mutusl interaction. This
result generalizes naturally the classical photon counting distribution, derived
previously by Mandel (28,29):

Wenm = tee 7 (I7)" exp (-17)

-4
wh i = . + is the spontane-
ere we introduced the operator T (T) “?/T I b('HIDG) dti‘{:l_ e sp a

ous radiative life time of the excited state, § the quantum efficiency, and T

guarantees time and normal ordering of the operator products. In the present form,
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this result closely resembles the classical one, where I{t) is the time averaged in-
tensity, and the ensemble average is carried out over the classical fluctuations of
the field. The compact form of the -guantum result is lost instantly when we attempt

to calculate the distribution for any practical problem, since in order to comply with
the ordering prescription, the exponential must be expanded and the multiple time in-
tegration must be turned into iterated convolutions. This demonstrates clearly that
the photon counting distribution comprises the entire hierarchy of multiple photon
correlation functions.

As in the previous chapter, the properties of the field will be traced back to the
properties of the emitting dipoles. In this way we can determine normally ordered
correlation functions of arbitrary order from the general solution of the corres-
ponding Bloch equations: (14)

€m \
?;j W) = Z: K;j (t-£') Qo (t)

The correlation function of order n+l e.g. assume the following form:

(h+f) ",:f 53
G =T KD (tg=ts.) - 8,

$s
whers ?; is the stationary population of the fluorescing excited state. For con-
venience, we will use the abbreviation:

33
K. )= hw
The convolutions over the multiple product of h(t) is most conveniently carried out

by using the tool of Laplace transformations, and we find

T -
W) = Sdt éf,c Ttn,z)

°
where T{n,z) is given by:

7T (nz)

{(n-4)

' h 2
(e ha@ )™

LS

i
?u ﬁz

A= ¥p

The structure of T(n,z) suggests that the general photon distribution szhC‘\ can
be obtained by simple differentiation of the zero count probability:
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n A 9
Winty = (-1) T Jon Wn=o,1)
It is not difficult to show that the photon counting distribution in the general de-
finition above has the following properties:

i) W{n,T) is normalized o

Z Wint) = 1

haeo
and determines the average counting properties.

ii}  In the limit of a vanishing counting interval T=# 0, the probability of no

event approaches unity while the n count probability must vanish:

’Zi:o V(H,T) = é’".0

T

iii) The probability of observing precisely n events in an ever increasing interval
must vanish:

a;" W(VI.T) = 0

TR

The goal of our present considerations is to show on the basis of a first principle
calculation that the fluorescence from Dehmelt's shelving scheme, while driven in
steady state, is intermittent and displays long periods of darkness. This is to be
distinguished from a continuous flucrescence signal with only Poissonian fluctu-
ations about the average value. If the fluorescence is interrupted by dark-periods
of the order of the lifetime of the metastable level, say 1 second, then for a sa-
turated three level system we expect that in every third experiment we gbserve no
counting events, as long as the collection time T is ‘kept shorter than a second.

Bn the other hand, if fluorescence would be continuous with an average counting rate
of typically 10™8 per second it would be extraordinarily improbable to see no event
during a period of one second. This follows directly from the derived counting sta-
tistics, when we assume for a moment that I(T) is a constant c-number. for a

Poissonian process with average{n? = 1078 the probability of seeing no event is:

Win=0,T=1sec ) = expC 10°)
which for all practical purposes is identical to zero. In order to present an un-
biased approach, we must set up the calculation in a way that the result may lie
anywhere in this wide range of probabilities. This requires that we do not rely on
a perturbative approach around the average intensity or zero intensity by an approp-

riate expansion of the exponential. The series in n - photon correlation functions



132

that would be generated thereby cannot be truncated at any low order, since the
correlations tend to become negligible only when its order becomes large com-
pared with the average number of counts. For the present case this would require
the calculation of the first 10™8B correlation functions. For this reason we will
simplify the model to be used to such an extent that we can derive the statistics

in an snalytical and nonperturbative way.

Under the assumption - as above - that the system can reasonably be described
by rate equations, and in the limit of strong driving of the allowed transition, it
is possible to derive the counting probability in closed analyticasl form. For the pro-
bability of darkness over an interval T we find: (14}

R, -(RRAT g gt
V(n=o1) $o + R v & )

20+ 3R, \ Yo R, € t2e

and we can immediately decide whether this result predicts quantum jumps or not.
For an intermediate time interval T0 :

-

“1 ot _ o
1?| P Y. <K ’o <( X;. 3121
the probability of no events is found to be:

W R

(n=0T.) = Zy.+ 3%

which in case that we saturate also the forbidden transition, leads to the expected
probability:

Wi(h=0,7,) = 1/3

This result is only consistent with the picture of an intermittent fluorescence
signal and not with the Poissonian statistics of continuous fluorescence. The com-
plete time dependence of k@n;a(r) is plotted in Fig. 5. The curve starts at the
expected value of one for vanishing counting intervals snd then drops rapidly over
a period of the lifetime of the dipole allowed transition. This drop would continue
if it would not be for the metastable state. The shelving becomes evident in this
plot through the plateau in the intermediate time regime. The height and the width
of the plateau indicates the probability of occurence and the length of the dark
periods. As the saturation parameter S = R, / (R2+ #1) is increased in the plot, the
dark periods become more and more frequent and the plateau rises, while their
duration decreases, due to the induced downward transitiong that reduce the survi-
val time in the forbidden state. Above a time interval of the order of spontaneous
life time of the metastable state, the probability drops rapidly towards zero,
indicating that longer dark periods become excessively improbable. The probability
for observing a given finite number of cdunts is easily derived by mere differenti-

ation. Since only the second term in V/(n:o;r\ depends on 8,7, only the rapid time
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constant ¥, enter the probability W ( n, T ) for n » O:

fu+ R 1 /1 h
Winm) = 2 g w (2347 ) e

i.e. a Poissonian distribution with the exception of the zero count rate. This means

~1eyT

that during the emission periods, the fluorescence is well described by Poissonian

statistics. A qualitative plot of the distribution is shown in Fig. &.
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Probability of observing no events in a time interval T. The parameter is the sa-
turation rate of the forbidden transition. For strong saturation the plateau rises

up to the expected value of 1/3.

It may be illustrative tc note that the probability of observing a single or a few
counts in a period TO is extremely small, since this would correspond to a marginal
event, where precisely the lasst photon of the previous period, or the first, but only
the first of the next period falls into the counting interval. The derived distri-

bution demonstrates this clearly:

W(n=1 T=1sec) = 10°. exfz(-zog)

13 +
Win,T} 10%
f
n='0[—n=1 n=108

Fig. 6
o1 -1
Photon counting distribution W(n,T), schematically for Z‘ = 10°8 sec, XL =T =1 sec.
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which again can be identified with zero for any practical purposes.

The dark time is easily determined experimentally. Since it varies largely about
its average value, it may be interesting to derive also its statistics and compare it
to the experimentally determined histograms. Obviously, the zero count probability must
be associated in some way with the probability P (‘T ) of observing a break in the
strong emission of length T. In Fig. 7 we derive in an intuitive way P ( T } by the
following arguments:

i}  All events where the dark time is larger than the chosen interval T contribute
to W ( n,T ), h=o ,

ii) wWhen we vary T-% T + dT,the change of probability:

dv
WinTsdT) - W(inT) ~ TF -dT

is a measure for the probability of observing a last or first event in con-
nection with a following or previous period no events lasting for T seconds.
This is indicated in the middle of Fig. 7. This is obviously not yet the quan-
tity that we want to compare with experiment, since the associated dark period
is still shorter than the actual one.
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Fig. 7

Dark time probability P(T)dT is related to W(n=0,T) through differentiation as
sketched in this plot.
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iii) A second variation in the time interval,properly normalized, however, leads us
to the désired probability density of observing a period of darkness sandwiched

between two emission events:

1 o’ Winszo,T)
Py = W’(n:o,‘rao) dT2

This quantity is positive, due to the monotonous property of W(n=0,T). It contains

the probability of darkness between individual photon emission events during the
bright periods, as well as the probability of leng dark intervals; i.e. it contains
the complete information that could only be obtained with a photo multiplier of
arbitrary time resolution. This probability allows us to illustrate the intermittent
statistical fluorescence signal, by drawing random numbers from a computer, which
are distributed according to the calculated density. Then for any given number we
draw a line of unit length that is separated from the previous line by a distance
proportional to the last random number. So most frequently small numbers are drawn,
and the lines lie densely together, until a large number creates a gap, the dark

period, see Fig. 8. This illustrative plot has first been devised by Zoller et.al.
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Fig. 8

Simulation of the fluorescence from a three level system by drawing random numbers
according to the dark time distribution P(T). This simulates an experiment with
arbitrary time resolution.

using a different but equivalent theoretical basis. The plot would represent a ty-
pical experiment if the detector wouldn’t have a dark time of itself and wouldn’t
average over a finite time interval. The averaging can be done also numerically and
a more realistic signal results as shown in Fig. 9. In the meanwhile, experiments

at different places have observed the quantum jumps independently (30-33). The first

observation has been made by Dehmelt, who almost 10 years ago has first suggested
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The same simulation as in Fig. 8 but with a finite time resolution.

this experiment. Qualitatively this result looks very much like the simulated plot,
quantitatively a comparison is not that easily available, since the experiment had

been made on a more complicated level structure.

4, Conclusions

In classical mechanics it does not cause any intrinsic contradictions when we
describe states of a mechanical system and its time evolution, without considering
explicitly the way we interact with that system through a detection device. For a
quantum mechanical system this is fundamentally different, It does not mean anything
to say that an electron is in any specific state, or has jumped to a different one
at a given time, without considering the measuring process that provides this in-
formation. As in a single atom fluorescence experiment, we have no way to deter-
mine the dynamics of an isolated electron, what it is doing when we do not look at
it. It is the fluorescence signal, the counting event, the click in the detector
that indicates that the electron has returned to its ground state. This event is
discrete, and occurs at a given time. It is meaningless to consider the question
whether the electron dynamics by itself determines the discreteness or the photon
emission process or eventually the detection mechanism in the photﬁn multiplier. It
is the entire combined physical system that displays this feature, and there is no
way to dissect the quantum system and separate it into the basic process and the
measurement. In this sense, the discreteness of the quantum jumps and the discrete-

ness of the photo effect has the same origin.
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What has revived this idea again after all these years is the progress in ex-
perimental technology which now has made it possible to perform the essentisl step
and to do experiments on single atoms or molecules. This allows one to look at in-
dividual events emitted from a single particle and not only on the average be-
haviour of a large ensemble. In finally detecting these single events, the shelving
idea of Dehmelt has been essential, since it provides a simple way of amplifying the
weak microscopic signal that indicates the gquantum jump up to & macroscopic scale.
In a way this is a very transparent and simple example of & quantum mechanical
measurement, where a microscopic signal i.e. the photon from the weak transition
is amplified in order to move a macroscopic pointer, the position of which we can
read off, without interfering any more with the microscopic system. It is well-known
that this quantum mechanical amplification process inevitably introduces noise,
which limits the precision of our observation, in agreement with the uncertainty
principle. This is rather obvious in this example.

It was not the aim of this paper to get involved again in the old controversy,
or to say anything new about the electronic quantum jumps. The aim was to des-
cribe the statistics of the light field, emitted from a continuously driven three
level system, and-to determine whether the intuitive picture, based on the simple
quantum jump concept, leads to the correct prediction for the experiment or not. In
order to do this, the theoretical approach had to be free from any ad hoc assump-

tions that would introduce the quantum jump concept through the back door.

In our calculation of the photon statistics, we have demonstrated that the dis-
continuous jumps in the flucrescence are directly related to the angular momentum
statistics of the n level atom, and are a basic feature of the quantum system. It
may be worthwhile to stress that the descripticn of the jumps does not require teo
introduce an additionsl time constant’ that would not already be present in the
atomic dynamics and the detector response. Even with a detector of arbitrary time
resalution, the occurence of a8 jump can never be determined to a higher accuracy
than the time between individual emission events. And even this is only an average
number. If the time after the last event gets longer than the average time, then
this can indicate an excessively improbable event, and we are still in the bright
period. It is only when the darkness lasts for many spontaneous life times that we
have to conclude finally that the electron is shelved and darkness will last for

much longer, i.e. the lifetime of the metastable state.

The quantum jumps in the fluorescence signal are a unique quantum phenomenon,
which is characteristic for a single particle system. Its satisfactory theoretical
description in a simple and transparent model, together with the beautiful experi-
mental verification of the intermittent fluorescence makes this phenomenon a key

problem in quantum mechanics, which is also of great pedagogical value for the
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understanding of fundamental processes, and the quantum mechanical measurement.
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SPONTANEOUS EMISSION IN PACE
by
S. HAROCHE
Ecole Normale Supérieure (Paris) and Yale University (New Haven)

The quantum noise of the electromagnetic field usually sets an
intrinsic limitation to the precision of any optical experiment. Interferometric
methods are essentially based on the determination of the phase of a quasi-
monochromatic fieid, whose ultimate fluctuations are of quantum nature.
Similarly, spectroscopic measurements of atomic energy intervais have their
precision ultimately limited by the natural width of tr;e excited electronic
states. This width reflects -thrcugh the Helsenberg uncertainties— the
spontaneous decay of these states due to their coupling to the quantum
fluctuations of the vacuum fleld... It has recently been recognized however
that the effects of the vacuum fleld noise can be greatly reduced in some
physical observations and during the last two years, several experiments
have demonstrated the reduction or even the nearly complete cancellation of
photon noise effects. These experiments fall Into two categories | squeezed
states generation experiments [1] make use of non-linear optical processes
in order to decrease the quantum noise on one phase of the field -at the
expense of the quadrature component on which the noise is increased. In
Cavity Quantum Electrodynamics experiments [2-s5], atomic systems are
confined in smail cavities in which the modse distribution of the vacuum field
is strongly modified with respect to its free space vaiue, entailing important
alterations of the radiative properties of the atoms. The quantum noise
resonant with the atomic transition can be elther suppressed or increased,
leading to either inhibition or enhancement of the excited states spontaneous
decay.

Recent squeezed state generation experiments are discussed in other
contributions to these proceedings. In this paper, | will discuss spontaneous
emission modifications induced by a cavity, describe a recent experiment in
which the suppression of spontaneous decay has been observed for the first

time on an optical transition and discuss some implications of this effect.
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ntane emissi in v : ba n

The change of spontaneous emission in a cavity Is a quite simple
effect, which can be understood by an analysis of the mode density of the
vacuum radiation field surrounding the atom ([e-7]. An atomic excited state
je > undergoes spontaneous decay towards a final state If > because the
system can radiate a photon in any mode of the vacuum fieid surrounding
the atom. The probability I of photonemission per unit time is simply given
by the Fermi-Golden rule :

r"—%ﬂ- 1< giBie >1%. ru. p(w) (1)

In Equ. (1), <« glale > Is the matrix element of the atomic dipole operator
B between the initial and final states, hw measures the vacuum fleld
fluctuations per mode at the frequency w of the atomic transition and p(w) is
the density per unit volume and frequency of final photon states with the
polarization of the atomic transition. In free space, p(w) Is Isotropic :
(polw) = w?/m%c® . If the atom happens to be confined in an electroma—
gnetic cavity, the boundary conditions at the walls modify the mode density
and accordingly change the emisslon rate. Of particular interest is the case
of an atom in a cavity so small that p$Ca¥) (w) = 0 (cavity beyond cut-off).
Then the field quantum noise is totally suppressed at the relevant frequency
and the excited atomic state survives for ever {7] —at least in principle. ..
To be more specific, we now discuss the simple situation of an
atom radiating between two plane parallel mirrors separated by a gap d.
The calcufation of the mode density in such a structure is a text book
problem of classical electromagnetism. Figure 1a) represents the mode
density pc(rcav)(w) and pfrcav)(w) corresponding to fields having at the
midplane position z=d/2 an electric field respectively parallel and normal to
the cavity mirrors (¢ and w polarizations respectively). The variations of
pécav) and p,(,caV) versus w are compared to the one of the free space
mode density py, shown by a dotted line on the same figure. The most

striking feature is the cancellation of p‘(:cav)(w) for w below the cut-off

frequency wg=wc/d, whereas p,(,caV)(w) remains non-zero down to w=0 and
s actually larger than pg(w) for w € 1.5 wy. These features have a very
simple explanation. The modes with an electric field parallel 1o the mirrors
must present a vanishing tangential electric component at the metallic

boundaries, which requires the existence of at least one standing wave
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Filgure 1 : a) Mode density plw) versus w in a cavity made of two plane
parallel mirrors separated by a gap d. Density evaluated
at midgap position z=d/2: full line : o polarization:

dashed line : w polarization. For comparison, the free
space mode density is represented in dotted line.

b) Ratio rfcav/r, versus frequency w: full line
spontaneous emission In poiarization ¢: dashed line
spontaneous emission in polarization w

between z=0 and z=d, l.e. d > A/2 or equivalently w » w,. The modes with
their electric fleld normal to the mirrors, on the other hand, correspond for

w=0 to the electrostatic configuration of a parallel plate capacitor. These
(cav)
(w)

modes thus exist down to zero frequency. The linear variation of py

versus w for w small has aiso a simpie Intarpretation. The only modes
surviving in the cavity below w = wy have their wave vector X parallel to the
mirrors. The K vector associated to a frequency w have a length w/c and,
in phase space, their tips belong to a circle of radius w/c, whose length is
proportional to w/c. In free space on the other hand, the T<’ vectors
corresponding to frequency w have thelr tips on the surface of a sphere,

whose area Is proportional to w?/c?. The mode density p1(Tcav)

(w) Is thus
larger than pg(w) by a ratio proportionai to ¢/w, l.e. to A. Actually, this
dimensionless ratio is 3a/4d (pyC2Y) (W) /pgtw) = Brg/4d = 1.6 for the cut-
off wavelength Ao = d/2).

According to the above discussion, the spontaneous emission rate

r(cav) of an atom located at midplane between the two mirrors is equal to
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(cav)

the free space rate I, multipiied by the factor p, (w) /pglw) If the

atomic transition is polarized parallel to the conducting surfaces and by the
factor pS 3" (w /pg(w) If it is polarized perpendicular to them. Figure 1b
shows the varlations of these ratios versus w. For o polarized transition, the
spontaneous emission rate Is totaily suppressed when w < wg. It undergoes a
sharp Increase at w=wy and other resonances occur for w=3w,, Swg... For
~polarization, the emission rate is enhanced with respect to I'p for w < wg,
being equal to 1.5 Iy for w=wg.

The spontaneous emission rate alterations are important only for w
smaller than or of the order of a few wy. For larger atomlic frequencies, or
equivaiently for larger cavity sizes, rc(,cav) and r,(rcav) rapldly become
very close to I'y. These cavity induced effects thus require cavities whose
sizes are of the order of the atomic wavelength.

For the sake of simplicity, we have restricted this analysis to atoms
located at z=d/2. At other locations in the gap between the mirrors, the
mode density also undergoes resonances for w=2wg, 4wg... (the corres-
ponding modes have a node at the mid plane position and their contribution
thus does not appear on Figure 1). The important point for our forthcoming
discussion Is that the field amplitude in the cavity does not depend upon z
for w ¢ wgy, so that all the concilusions derlved above remain true even |if
z#d/2, provided w < wgy ! the dramatic effects of spontaneous emission
inhibition (for o polarization} and enhancement (for w polarization) are
position indepandent in the cavity when w ¢ wy. The above discussion has
assumed perfect mirror conductivity. Small cavity iosses have the effet to
smooth the sharp resonances of I'{¢a8)/r, and result in a small non-zero
radiation rate in o-polarization for wswg.

| have chosen here to discuss cavity Q.E.D. effects according to a
fleld mode expansion analysis, following the point of view of other
theoretical studies (&), from which most of the above discussion can be
derived, although not always very directly. This approach has the advantage
of emphasizing the photon noise point of view and clearly demonstrates that
the cavity offectively cuts down or amplifies the vacuum field noise
components resonantly coupled to the atom. Another equivalent point of view
chooses an electric Image approach [®] : the atom in the cavity is
described as a dipole interacting with its own seif-radiation field and with
the field reflected from the mirror which is viewed as being radiated by

image dipoles induced In the cavity walls. This alternative model describes
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the atom + cavity radlation process as an Interference effect between the
flelds radiated by the atom and its images. It yields of course exactly the
same conclusions as the mode expansion model. We wili not discuss it any
moreg in this paper.

it lcrowave

The first evidence of radlative rate modifications near metallic
boundaries came from fluorescence measurements performed on compiex
molecules radlating near a surface [10], | will not discuss these early
experiments here and | will restrict my analysis to the more quantitative and
more precise experiments performed recentiy on isolated and simpile atomic
systems in cavities, These experiments have to overcome the difficulty of
confining excited atoms in metallic structures whose dimension s of the
order of the atomic transition wavelength. One solution consists in studying
Rydberg atomic states radlating on long waveiength centimetric or millimetric
transitions. The cavities are then fairly large and atoms moving at thermal
velocities stay in these cavities during a time varying from a few
microseconds to a fraction of millisecond, depending upon cavity geometry.

The first experiment of this kind [2] has been carried out at Ecole
Normale Superieure in 1983 : we have observed the enhancement of the
Spontaneous emission rate on the 23S to 22P transition of Sodium atoms at
a frequency w/2¢ = 340GHz (A ~ 0.88mm transition). Atoms crossing the
cavity were excited In a cm-size cavity operating in a high-order mode,
which was resonant with the atomic transition. The cavity was of Fabry-Perot
type, with one plane and one spherical mirror. This configuration -slightly
different from the simple biplanar geometry discussed above~ is much more
Convenient for the observation of resonant enhancement of spontaneous
emission rates. The semi-cofocal Fabry-Perot structure has the advantage
of considerably increasing the density for transverse electric field modes
resonant with the cavity. In such a configuration, it is more appropriate to
analyze the mode density in terms of the cavity quality factor Q. If the cavity
has a volume V , p((’cav)(w) Is at resonance equal to Q/w U~ (one mode
per frequency Interval w/Q and volume U ). it Is thus enhanced with respect
to free space by the factor ~ w®Q/VUc® ~ A%Q/U°. Thus, for high Q's and
@ven if the cavity does not operate in its lowest orders (U » A%, large
@nhancement factors can be obtained. In our experiment, Q was of the

order of 10® and an enhancement of about 500 was achieved, much larger
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than the maximum factor 3 in the biplanar configuration (see Figure 1b).
The free space spontaneous emission rate I ~ 150s™* was Increased to
ri®av . g 10%s~t,

The first observation of spontaneous emission inhibition in the pilane
mirror cavity configuration was carried out at M.I.T. by Hulet, Hiifer and
Kleppner [41 In 1985. The cavity was made of two piane aluminized mirrors
separated by a d=0.23mm gap. Cesium atoms were prepared in a high
angular momentum “circular® Rydberg state [11] with principal quantum
number n=22, before entering in the cavity. The Rydberg electron was then
in a plane, oriented parailel to the mirrors so that the electric dipole of the
atomic transition was o polarized. The atomic frequency (Rydberg n=22 -
n=21 transition at ~ 663GHz) was tuned just below the cavity cut-off

frequency wg = cn/d by Stark effect Induced in an external static electric
fleld. The atoms were crossing at thermal velocity the 12cm long cavity In a
time of about 0.5ms, Il.e.- of the order of the natural life time of this
transition in free space (corresponding to L' ~ 2000s™%). The absence of
excited state decay during that time (monitored by detecting the atomic state
after the cavity crossing) was the evidence for a nearly complete
suppression of spontaneous emission in the cavity.

Rydberg atoms are very convenient for these cavity Q.E.D.
experiments because their very weakly bound electron spontaneously emits
tong wavelength radiation. The “geonium® system, weakly bound state of an
isolated electron in a Penning trap constitutes another choice system for
such studies. By measuring the damping of the cyciotron motion of an
electron in such a trap, Gabrieilse and Dehmeit at the University of
Washington [3] have observed that for some values of the magnetic field the
cyclotron damping occured slower than in free space, whereas it was faster
for other magnetic fieid values... In this experimeni. the trap electrodes
themseives made a cavity with elgenfrequencies close 1o the cyclotron
frequency (~ 164GHz corresponding to A ~ 2mm). By slightly changing the
fleld strength, the electron frequency was swept across the cavity frequen-—
cies, Inducing either cavity enhancement or inhibition of the spontaneous
emission rate. In this experiment, the free space rate I'o ~ 12s™* was
increased to about 30s™* or decreased down to 3s™*, This observation,
made in 1985, preceeded the MIT group demonstration by a few months,
but its quantitative analysis is somewhat more difficult because of the

complex cavity geometry.
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exit.

In all these microwave Q.E.D. experiments, the spontaneous rates
to be modified by the cavity were quite small (10 to 10%s™! range), the
Quantum nolse being indeed very weak in this frequency domain. In order to
demonstrate the prospects of cavity Q.E.D. for an effective quantum nolse
Suppression, It was important to extend these experiments to much higher

frequencies, up to the optical domain where spontaneous decay is a much
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stronger effect, becoming a real limitation to spectroscopic resolution. The
problem is then to realize micron-sized cavities and to confine excited atoms
in these structures during a time exceeding several natural life times. Such
an experiment has very recently been carried out at Yale University [s] on
exclted atoms sent between iwo plane parallel mirrors spaced by a 1.1um
gap.

The experiment has been performed on the 5Dg/, state of Cesium,
which has a natural life time 1g = r;" = 1.6us. The energy levels relevant
for the experiment are shown on Figure 2a. The 5Dg,, level decays with a
branching ratio 1 to the 6P,,, level, emitting 3.49um wavelength radiation
which Is cut-off In the micron—-wide cavity. For the experiment analysis, it is
important to describe the hyperfine structure of the levels (shown in Figure
2b). Due to the coupling between the electrons and the Cs nuclear spin
I=7/2, the 6Ds,/, level is split into 6 hyperfine levels (F = 1 to 6) and the
final 6P,/ state into 4 levels (F' = 2 to 5). Each of these levels is made
of 2F+1 magnetic sublevels IF,Mg >, IF',Mg- », which are eigenstates of
the total angular momentum projection F, along the quantization axis
(chosen as the normal to the mirrors). The radiation rate TF, Mg of each
IF, Mg > sublevel of the 5D/, state can be divided into a ¢ and a m
contribution, corresponding respectively to the emission of photons polarized
parallel and perpendicular to the mirrors surface :

rF"MP = r;BF + r;”}),? (2)

These contributions are assoclated respectively to aMg = *1 and
AMg = 0 transitions to the final 6P,,, F'Mg: states (¢ and n photons carry
respectively 1 and O units of angular momentum along the quantization
axis). In free space (or in a large sized cavity), the total emission rate is
the same for all substates (the vacuum fluctuations are then isotropic
FFMF(free space)  _ Fg). Between two ideal mirrors with a spacing
d ¢ A/2, we expect on the other hand :

r(ctav,cr) =0 ; l_(cav,rr) _ 3 l_(17)

F,MF F,MF 44 F,MF 3

(In our d=1.1um wide cavlty, 3r/4d = 2.38). Each IF,Mg > substate Is
thus expected to have a modified emission rate .
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r(celv) - 3 m)

l»(
F,M, ad FM,

which depending upon the ratio of the m to o emission channeils for this

(4)

particular state can be either smaller or iarger than Iy, Of special interest
are the F = 6, Mg = 6 maximum angular momentum states which decay

only via o transition {see Figure 2b). The radiation rate for these states is
Ts ts(cav) = 0. in generai, the radiation rates can be readily determined

from wequation (4} and standard angular momentum algebra ylelding
FFMF(’T) for each subievel. We find :

2 2
3A 36+ 3x 60~
r( cav) - MF ro; 1_,( cav )= ME’ r

6, 4a 66 ‘o 5,M, 44 150 o
2 (5)
+
(cav) _ ax 1090 + M, .
4, 44 3850 o

The experiment being described in detalls elsewhere [s1, | will recall
here only its main features. The set—up is sketched on Figure 3. Cesium
atoms are produced In an atomic beam by an oven. They are sent through
a 1.1um wide 8mm long cavity made by two flat gold coated blocks stacked
agalnst each other with thin Nickel foll spacers between them. The 5Dg/,
level preparation is achieved by a c.w. laser beam (laser n®1) tuned to the
68,,, (F=4) - 7P3,, (F=5) transition. About 13% of the atoms excited in
this way are transferred by spontaneous cascade into the 5Dg;> level just
before entering into the mirror gap. The crossing time of the gap lasts
about 20us, l.e. ~ 13 natural life times of the 5Dg,, state. In free space,
only ~ 2 atoms in 10° would survive in their excited state this crossing. At
the mirror exit, a second c¢.w. laser beam (laser n®2) excites the atoms
remaining in the 5Dg,, level up to the 26F Rydberg state, which Is
subsequently field ionized, the resuiting electirons being detected by a
channeltron electron multiplier (CEM). The laser 2 frequency can be tuned
across the hyperfine structure of the 5Ds/, level and the resuiting Rydberg
electron signal Is recorded versus Its frequency. The obtained spectrum
thus yields the relative populations of the various 5Dg,, levels as they have
Survived the cavity crossing. This spectrum-recorded with laser 1 in position

B upstream the mirror cavity Is compared with the same spectrum obtained
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when laser 1 is moved in position A downstream, l.e. In superposition with
laser 2. in this configuration, we detect Cs atoms which have crossed in
the ground state the cavity and which have been excited Into the 5Dg,,
level and immediately detected. We thus get a normailzation signal which
provides the relative populations of the 5Ds/, F hyperfine levels as they are
actually prepared by the 6S,,, » 7P/, - 5Dg/, Stepwise process.

Spectra with laser 2 respectively in position A and B8 are shown in
Figure 4. Figure 4a shows that the excitation stage prepares atoms in
hyperfine leveis F = 4, 5 and 6 (arrows # 1, 2, 3). Of these oniy atoms in
hyperiine levei F = 6 have their spontaneous emission inhibited enough to
survive the gap crossing and to yield a large absorption signal with laser 2
in position B (arrow # 3 In Figure 4b). From an analysis of these data, we
conclude that the spontaneous emission process Is essentlally suppressed in
the gap for the F=6, Mg=t6 substates (we have to correct for excited state
decay before entering and after exiting the gap: more over only ~ 68% of
the atoms in the F=6 level are aligned In the Mg=%6 sublevels). For all the
other substates (F=6, Mg<5 or F<6), the cavity modified ilfe times remain
short enough so that the atoms do not survive the gap crossing In their
excited state.
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Fig.4 : Optical spontaneous emission Fig.5 : Excited state
inhibition experiment : spectra of the transmission through the
5Dg/,+26F transition recorded with tunnel versus the angle
faser 1 respectively in positions A © between the magnetic
and B (see Fig.3). Recording b is field and the normal to
avidence for suppression of spontaneous the mirrors

decay from the 5Dg,, level In the
cavity.
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The magnetic dependence of the signal provides a clear evidence
that we are actually observing an anisotropic vacuum field effect in the
cavily. In order to observe the absorption peaks of Figure 4b, it was
necessary to apply a magnetic field of about 2Gauss along the direction
normal to the mirrors. This field prevented the Mg = %6 states from being
mixed with shorter lived Mg < 6 levels by the stray laboratory fleld having a
non zero component along the cavity mirrors. The magnetic mixing effect Is
illustrated In Figure 5 which shows the excited atom transmission signal as a
function of the angie & between the directions of the applied magnetic fieid
B and the normal to the mirror (the applied field being much larger than
the stray lab-field). When B is along the mirror axis (e=0 or & ~ 180%, a
large transmission Is observed. For B at an angle with the normal to the
mirrors, the magnetic mixing becomes Important and a!l the magnetic
sublevels acquire a life time short enough that they do not survive anymore
the mirror gap crossing. The solid line in Figure 5 corresponds to a
calculation of the effective life time of the magnetically mixed leveis as a
function of © (we use for this calculation the FFMF(CaV) rates given by
Equ. (5)). The good agreement between theory and experiment indicates
that we are in effect measuring here the FFMF(Ca") emission rates (for
F=6, IMg!l < 5).

This experiment demonstrates that the quantum noise responsibie for
spontaneous emission can be suppressed up to optical frequencies provided
the excited atom can be confined in micronsized metallic structure. it aiso
shows that this suppression effect is anisotropic, refiecting the breaking of
the vacuum isotropy by the plane parailel geometry of the mirrors. The main
difficulty of this kind of experiment comes of course from the extreme

collimation required for the atomic beam. The angle subtended by the

mitror gap Is only ~ 30-4 radian and the Ceslum oven has to be moved
with precision until the atomic beam Is perfectly aligned on the mirror gap
axis [12]. Contamination of surfaces by the atomic beam and pressure
bulld-up inside the gap are also sources of noise and experimental
problems (the small residual contributions of atoms in levels F = 4 and § in
the spectrum of Figure 4b probably comes from collisional transfers of

atoms from the long lived Mg = +6 states In the last mm bofors dotoction).
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Limitation to excited atomic state suryival in a cavity : the Van der Waais
interaction with the walis

An interesting question we should ask at this stage is "how long can
an excited atom be kept disconnected from vacuum fluctuations 7*. The Yale
experiment has achieved the largest life time iengthening ratio so far. Could
this ratlo be further increased and excited atoms propagated during
hundreds of natural life times in micronsized structures ? First of all, the
spontaneous emisslon inhibition is limited by finite cavity losses, allowing a
small "residual® vacuum field to leak into the cavilty beyond cut-off. In our
experiment {(goid surface reflexion coefficlent ~ 86%), this effect corres-
ponds to a minimum inhibited rate ~ 0.04ry. This limit could be improved
by using better conducting cavities in which we could try to propagate
excited atoms along longer pathes... Apart from pure geometrical colii-
mation problems, we would then rapidly run Iinto a fundamental limitation
related to the Van der Waals interaction [13] of the atoms with the cavity
walls. Excited as well as ground state Cesium atoms are pulled to a metallic
surface at distance z by a Van der Waals force which, at close atom metal
range, Is proportional to z~*. Only atoms exactly at mid-gap would in
theory survive without failing on the mirrors, but this is a very unstabie
equilibrilum sltuation. .. Fundamentally, the Van der Waals atom-metal
attraction cannot be separated from the cavity induced radiative decay
modification. We have considered above the resonant coupling of the atom
with field modes having the frequency of the atomic transition (dissipative
part of the atom-field Interaction}. The atomic system iIs aiso coupied to the
non-resonant modes of the vacuum field (dispersive contribution). This
coupling can be analyzed in terms of virtual photon emission and
reabsorption processes and is responsible for radiative energy shifts. The
cavity induced changes of the mode density also modily these processes
(virtual photons -as real ones— can only be emiited in modes compatible
with the cavily geometry). As a resuit, the atomic energy leveis are aitered
in the cavity, These modifications depend upon the position of the atom
since it can be coupled only to these modes which have a non-zero electric
field amplitude at its location. The derivative of these energy level shifts with
respect to z is nothing but the Van der Waals force mentioned above. The

analysis of the Van der Waals interaction in term of Q.E.D. virtual
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processes in a cavity has been carried out in many theoretical papers
falf14], the first of which being a pionneering article by Casimir and Polder
{as].

We present now a qualitative argument showing that the Van der
Waals force usually restricts the excited state survival time In the cavity to a
few tens of natural Hfe times. in a biplanar cavity structure at cut—off
(d=Aa/2), the maximum distance an atom can be from mirrors Is z=A/4. The
Van der Waals energy shift of an excited state in configuration num is then
of the order of

2
A 8 1 2 2 2
AE(ZN——)N———“q —5— <x +y +2z2 > (6)
num
4 are A
[«
where q Is the electron charge: x, y, z are the valence electron
coordinates in the atom frame and < ’aum denotes an average in the
excited atomic state. Let us compare this shift to the spontaneous emission
rate In free space for an atomic transition of wavelength A between levels
Inum > and In‘Um’ > ¢

2 83
P =43 8T '

- 2
o < ntm j¥] n't'm' >|

(7)
Imre h A
(o]
The squared matrix element in Equ. (7) Involves an overlap Integral between
different states and is usually about an order of magnitude smalier than the
diagonal matrix element in Equ. (6). Keeping track of the various n factors,
we thus get as a general order of magnitude :

A hr

8E (2~ = ) " —o (e)

This result, independent of A, shows that the cavity induced dispersive
Corrections are -around the midgap point- of the same order as the
dissipatlve corrections (which completely cancel I'y). The Van der Waals
force Fyw attracting the atom to the mirrors is the derivative of AE versus z
and of the order of 3AE/(A/4) ~ 12AE/A. Thus, around midgap :

3nr
Fow —5 (9)
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Thls force corresponds to an acceleration yyw ~ 3hlg/MA (M = atom
mass), The distance an atom falis towards the mirrors during a short time 7
s

37:1‘01-2
5z ~ —— (10)

Since Fyw Increases very quickly when 2z diminishes, it is legitimate to
assume that the maximum time Tma, an atom will survive before coiliding
with a mirror is such that 8z (Tqgy) ~ A/10 or :

2 /2
. w2
Tmax [ 1shT_ ] (11)

The maximum life time enhancement ratio is thus :

T MAZI‘ 1/2
[ =] (12)
To ish

which can be rewritten in the more transparently homogeneous form as :

T Mcz.m‘0 2
,
o)

2 2
Aw

in which we have introduced the atom rest-mass energy (Mc?), the atomic
transition energy (nrw)} and the exclted state Helsenberg energy uncertainty
(RCo). In our experiment [Mc2~1.2 10%teV: hw=0.35eV: Ary~3.9 107*%v3,
we find Tmax/To ~ 20 which is of the same order of magnitude than our
observed enhancement factor {(~ 13). Actually a more precise computation
of the atomic Van der Waals trajectories in our 1.1um wide mirror gap
shows that 20% of the atoms oniy survive colliding with the walls. The
excited state atomic transmission would completely vanish if our cavity length
was extended beyond v ~ lcm. Equ. (13) shows that Tyax/To Is of the order
of the square root of the ratio between the natural width (Arg) and the
photon recoil shift {(Rw2/2Mc®) of the atomic transition. This ratio cannot be
varied too much In the optical domain. (it slightly increases with M, which

justifies the choice of a heavy element in this experiment).
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The last question which remains to be addressed Is whether these
life time enhancement experiments would be interesting for pure spectros—
copic or metrology applications., Would it be possible to make use of
spontaneous emission inhibition to reduce the spectral line widths beilow
their natural limit and achieve better ultimate resoilutlon ? The answer is
here again unfortunately given by the Van der Waals interaction. The long
lived excited states are indeed energy shifted by an amount at least of the
order of the natural width (or a non-negligible fraction of it: see Equ. (8)).
This shift Is furthermore quite Inhomogeneous in the cavity so that it seems
that any spectroscopic measurement will sutfer a perturbation at least as
large as the natural width suppressed in the cavity | This Is of course only
a first order answer and one can Imagine schemes in which one selects
atoms travelling close to mid-gap, along trajectorles where the cavity shifts
could be minimized and controiled. It is worth noting that similar frequency
shifts are expected in the Penning trap electron experiment. The precision
of this experiment aiming at remeasuring g-2 wlll soon be such that a good
understanding of these shifts will become essential for its data analysis [se].

In conclusion, we can say that by suppressing photon noise at the
atomic frequency, we have been unabie to avold perturbing the atom by the
dispersive part of the atom-metal Interaction. The system we are then
studying Is no longer the atom in vacuum {(atom dressed by the vacuum
modes), but the "atom + cavity”™ entity (atom dressed by the cavily
perturbed vacuum). The Impossible dream of decoupling the atom from the
quantum field is only partiaily fulfilled. ..
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THE MICROMASER AS A PROBLEM IN "QUANTUM CHAOLOGY"

T. A. B. Kennedy, P. Meystre and E. M. Wright
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

1. INTRODUCTION

We consider a micromaser’?® consisting of a single mode, high-@ microwave cavity in which two-
level atoms are injected at such a low rate that at most one atom at a time is present inside the cavity.
In recent work, we have shown that its semi-classical version typically can lead to instabilities and
chaos.® In contrast, general theorems indicate that its fully guantized version always evolves towards a
unique steady-state.* These results confront us with an interesting paradox, since one would like to
believe that quantum mechanics contains classical and semi-classical physics as limits. This, of course
is the central question of quantum chaos.

The general approach to "quantum chaology" involvgs the detailed analysis of model systems
which are believed to be representative of the "generic" case, yet are simple enough to be handled
theoretically with some rigor. Here, as in classical chaos, one distinguishes between conservative and
dissipative systems. Classically, the former are described by the Kolmogorov-Arnold-Moser theorem,
and the cemral. idea is that of invariant tori, while strange attractors are the signature of chaotic
dissipative systems. Most theoretical work on quantum chaos deals with conservatives systems, a
notable exception being offered by the work of Graham and coworkers.® Because in any experiment
some element of loss is always present, we feel that the analysis of weakly dissipative systems
deserves much more attention than is presently the case.

What makes the micromaser attractive for chaos studies is that it can actuaily be built in the
laboratory, and that the experimental parameters are under exceedingly good control. In particular, the
atom-field interaction time and cavity damping rate can be varied almost ai will. Also, despite the
fact that the intracavity field can not (yet) be measured directly, the dynamics of the system can be
monitored by studying the state of the successive atoms as they escape the resonator, and this with
almost unit quantum efficiency. We thus feel that this system is ideally suited to study the elusive
“quantum chaos* both theoretically and experimentally.

The rest of this paper is organized as follows. Section 2 briefly reviews the quantum mechanical
description of the micromaser. Section 3 presents a semi-classical version of the system and gives the
evolution of the intracavity field in terms of a return map. In the presence of cavity damping the
semi-classical micromaser exhibits a number of coexisting fixed points, whose basins of attraction are
intricately entwined. We use simple pre-image arguments® to show that there are domains of initial

conditions where these basins of attraction are fractals. Graham et ol. have studied quantized
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versions of dissipative maps whose classical versions exhibit chaos® and found that quantum
mechanical fluctuations and tunneling between different attractors lead, at least in the semi-classical
limit # -+ 0, to the reduction of the quantum mechanical maps to classical maps with additional noise.
Recause we are dealing with spin-1/2 systems, the semiclassical limit # -+ 0 is meaningless in the
micromaser. Still, these results suggest that something interesting might happen when noise is added to
the semi-classical micromaser. Section 4 discusses recent preliminary results along these lines. They
show that in the micromaser, an average of the semiclassical trajectories over a large random set of
initial conditions reproduces at least some of the quantum mechanical features of the micromaser. This
indicates that somehow, the quantum-mechanical dynamics forces the micromaser to visit all classical

attractors. Finally, Section 5 is a summary and conclusion.

2. REVIEW OF THE QUANTUM-MECHANICAL DESCRIPTION

In this Section, we briefly review the quantum-mechanical description of the micromaser. Details
can be found in Ref. 2. We consider a single-mode, low-loss resonator into which excited two-level
aloms are injected at a rate low enough that at most one atom at a time is inside the resonator. The
atom-field interaction time ¢, is much shorter than the cavi’ty damping time 4!, so that the relaxation
of the resonator field mode can be ignored while an atom is inside the cavity, the coupled field-atom
system being simply described by the Jaynes-Cummings Hamiltonian.® During the intervals between
successive atoms the evolution of the field is governed by the master equation for a harmonic oscillator
interacting with a thermal bath.

Under these conditions, the reduced density matrix p; for the cavity field alone at the time #,,
when the (i+1)th atom is injected inside the cavity is given by the return map

Prltiny) = expllt,) Flty o) . m

where £, = t;,;~t;~t;;, = #;,;-4 is the time interval between atom i leaving the resonator and atom i+l
entering it, ¢, is the (constant} interaction time between an atom and the cavity field, and F{,) is
defined through

pelti+tiny) = Tr (U e UHOT = Fltydegle) @

where p(f) is the atom-field density matrix, U(t) is the Jaynes-Curomings unitary evolution matrix, L)
the Liouvillian of a damped harmonic oscillator, and Tr, stands for trace over the atomic variables.
Successive iterations of the return map (2) eventually yield a steady-state field density matrix prg
which is the solution of this equ‘ation with pplt;, ) = pelt;).

We consider the case where the field density matrix is initially diagonal in the number state
representation, and atoms without initial coherence are injected inside the resonator. We also assume
that the atoms enter the cavity according to a Poisson process with mean spacing 1/R between events.
where R is the atomic flux. This allows us to obtain® a closed form solution for the steady-state photon
statisics 2,



n
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where at resonance B8, = sin‘{nﬂ ]n tint} and N, = R/v. v being the cavity damping rate, « the

atom-field coupling constant and 7, a measure of the resonator temperature. N, can be interpreted
as the mean number of atoms transiting the cavity during its damping time v~'. We have checked the
resulting distribution against an exact numerical solution of (2), and found no significant difference in

the context of the present paper. We will return to the photon stzatistics (3} in Section 4.
3. REVIEW OF THE SEMICLASSICAL DESCRIPTION

There is no unique way to define a semiclassical limit. It is often interpreted as the limit # » 0.
But this limit has no meaning in spin-1/2 systems, and we use instead the conventional® quantum
optics semiclassical limit obtained by factorizing the full quantum mechanical Heisenberg equations of
motion. As shown in Ref. 8 for a lossless case and generalized in Ref. 3 for the case of a micromaser
with weak cavity damping, this procedure leads to the return map for the field &,,; at the time of
injection of atom (n+1):

& = aF (&) = D&, . @)

where the attenuation coefficient o is

o = expl~y7/2) , 8}]

7o is the (constant) time between injection of successive atoms, and & is given implicitely by

F&,) PN
L, dagil - [ “2 + n] - int - (6

Here n is a parameter indicating the state of the injected atoms, 5 = 1 for inverted atoms and 7 = -1
for ground state atoms, and 7, is the atom-field interaction time, all times being in dimensionless
units.?

In some of the numerical work, we have found it useful to reexpress (6) explicitly in terms of
elliptic functions as
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1+ gn2/4 7
Epy = @8y J 1+ &.24 - snf(ry, Kp) ' ()
where
Ta ™ Tint 1+ n/4 ®
and
K, =Y [T+&7 4 9

An example of the return map & is shown in Fig. 1.
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Figure 1: Return map &,,; = @(&,) for initially inverted atoms, 7;,, = 9, and & = 0.9.

%, label the fixed points that are unconditionally unstable and ; the conditionally
stable fixed points of the map.
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The map @(&) is not invertible, and its various fixed points have tightly interwoven basins of
attraction. These can be found by seeking the successive preiterates of some domain of the map whose
subsequent (forward) images are well understood. Grebogi ef al. have used such techniques’ to study
multi-dimensioned interwined basin boundaries in a number of maps. They found that these
boundaries can have different properties in different regions, and that these regions can be intertwined
on an arbitrarily fine scale.

Consider for instance the map illustrated in Fig. 2, which resembles the map of the semiclassical
micromaser. All initial conditions in the interval [4,B[ belong to the basin of attraction of 5, and all
points in JC.D[ certainly escape past #,. Constructing the successive preimages of these domains
allows to determine their respective basins of attraction. This immediately leads to the realization that
the basins of attraction of the micromaser are finely intertwined, and that they are Cantor sets at least
in some domains. We have not yet determined the dimensions on the basins of attraction, nor have we
tested the conjecture’ that "basin boundaries have at most a finite number of possible dimension
values.”
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Figure 2: Map illustrating the determination of the basins of aitraction of various fixed

points. The shaded regions represent the initial conditions leading 1o an escape past U,.

4. SEMICLASSICAL VERSUS QUANTUM MICROMASER

The semiclassical micromaser is generally chaotic and exhibits a number of coexisting and tightly

intertwined basins of attraction. The quantum mechanical micromaser, on the other hand, always
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evolves towards a unique steady state. One would like to believe that the latter includes the former
one as a limit, and yet, it appears that the semiclassical description allows for a much richer
dynamical structure than allowed by quantum mechanics. Little is known on the quantum/classical
correspondence in chaotic dissipative systems. We already mentioned the work of Graham and
coworkers, who studied quantized versions of dissipative maps whose classical versions exhibit chaos®,
and found that quantum mechanical fluctuations and tunneling between different attractors lead, at
least in the semi-classical limit # = 0, to the reduction of the quantum mechanical maps to classical
maps with additional noise. Unfortunately the limit # = 0 has no meaning in the micromaser, which
couples spin-1/2 systems to a boson field.

Although it is not clear if and how Graham’s results can be formally related to the problem at
end, the structure of the classical basins of attraction of the micromaser suggests that guantum
fluctuations might be influential in forcing the system to jump from one of them to the other. Hence
the addition of noise to the semiclassical problem might make it "look more quantum mechanical®. To
test this idea, we have performed preliminary simulations where instead of adding noise to the
classical map, a precedure that is very computer intensive, we average the classical results over a
random set of initial conditions.

The results of such a simulation are summarized in Fig. 3, along with the results of the quantum
mechanical results reproduced from Ref.2. We find a striking qualitative agreement between the
averaged semiclassical results and the quantum ones. The averaged semiclassical system now always
reaches a steady state with (é’,) = 0 and an average intensity (£.,*/4)(8) (which corresponds to the

1 J i J
0
6

Figure 3: (a) Quantum mechanical normalized average photon number f = {n}/N,, as a
function of 6 for N, = 20, 200, 2000 (from Ref.2); (4) Averaged normalized
semiclassical intensity f = (£ % /4N, for N, = 50; (c) Same for NV, = 100.

quantum mechanical (x)) essentially independent of ¥, for N, sufficiently large (see Figs. 3b and 3c).
This result is very unexpected: The scale parameters of the quantum mechanical problem are

Ny = R/y (10)
and

8= [Ny xtp/2 . (an
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while those of the semiclassical map are

Tint = Kjpy /4 = e/ Nex (12)

and
o = exp(-vt,/2) = exp(-1/2N,,) . (13

It is not at all intuitively obvious that when averaged over initial conditions, the (&, 7;;)-scaling of the
classical map should turn essentially into a 8-dependence only. In particular, the damping coefficient
o, which is an explicit order paraméter of the classical problem, and whose variation can produce?® full
Feigenbaum sequences, ceases to be important!

Just as striking as this result is the excellent qualitative agreement between the semiclassical
dependence of ! = (§,.%9/4N,, on B and the corresponding quantum result for f = (n/N.. In
particular, we recover the subsequent thresholds past the conventional maser threshold.? However,
their position is slightly shifted to lower values of 8. We do not know yet if this is an artifact
resulling from our rather simplistic choice of a random set of initial conditions. Note that the rather
“noisy" chatacter of ¥®) is a numerical artifact due to the limited number of trajectories averaged
over. This is evidenced in a comparison of Figs.3% and 3¢, which are the results of an average over
200 and 100 trajectories, respectively. In its present form, our program is not very efficient, a typical
run taking several minutes on a supercomputer. Also, the convergence of the ileralions of the classical
map decreases draslically with increasing V.. Improving the program will certainly allow for belter
statistical averages and more complete numerical experiments, in particular on the steady-state
intensity distribution P(&,.2, 6).

5. CONCLUSIONS

The comparison between semiclassical and quantum descriptions of the micromaser is obviously
far from complete. At this point, we do not have an explanation for the reported results. When we
started this work, we merely wanted to convince ourselves once more that spin-1/2 systems are not
good candidates to study the quantum-classical correspondence in situations exhibiting classical
dynamic instabilities. Clearly, our results force us to revise at least temporarily this view, and open up
more questions than they answer. Are they accidental or generic ? Can we recover more than just the
average guantum mechanical average energy? What is the physical origin of the agreement, and in
particular, what is the role of dissipation? What are its implications?

The qualitative agreement that-we found might be just a coincidence, but then, it would have to
be a rather remarkable one, specially since the quantum mechanical function #6) is far from trivial.
Whether the interpretation of our results will wind up being rather obvious or having any

fundamental relevance remains to be seen.
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Abstract

We show that the continuous—wave oscilliation of a two-photon maser can
be achieved with Rydberg atoms in a superconducting cavity, The maser
should operate with only a few photons and a few atoms at a time in the
cavity. Theoretical aspects of this new quantum device are presented. We

describe briefly an experimental apparatus presently under construction in
our lLaboratory.

Lasers —or masers— operating on two—photon transitions between atomic
ievels of same parity have been the subject of a great number of theoreticai
papers in the last twenty years [i-8]. These {asers present interesting
features, making them very different from “ordinary” one photon iasers. For
instance, it has been pointed out that the field emitted by these new
quantum devices might present interesting statistical properties (generation
of "squeezed" states of light [s—-el).

Up to now, in spite of numerous attempts, there has been, to our
knowledge, no realization of a continuous-wave two-photon osciliator. Only
one report of two—photon amplification in a puised regime has been
published so far [s]. This Is due to the vanishingly small gain on a iwo-
photon transition, at least for “ordinary” transitions between Ilow-lying
levels : two-photon amplification is masked by competing non-linear
processes, such as multipte wave mixing or stimulated Raman effect.

Rydberg atoms are a very good tooi for matter—field Interaction experi-

ments, because of their unusual properties. Among them, let us quote their
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vary large coupiing to radiation In the millimeter-wave range, where very
high Q low order cavities are avallable. In the last few years, they made
possible the realization of new quantum devices with fascinating properties,
such as masers with a threshoid down to one atom at a time In the cavity,
operating on one photon transitions, eithetr in a puised [1c] or continuous—
wave [1:] regime. This "micro-maser” regime has been extensively studied
theoreticaily [12-13],

We show In this paper that Rydberg atoms could aiso make possible the
continuous-wave operation of a two-photon maser, in a regime where a few
atoms and a few photons only are present, at a time, In the high Q
superconducting cavity.

The outline of this paper Is as follows @ in the first section, we give an
estimate of the two-photon maser threshold, and a simple seml-classical
model of Its dynamics. The second section will be devoted to a more
realistic quantum description of the maser. The field density matrix master
equation will allow us to investigate field statistics and phase diffusion. We
describe briefly, In the last section, the experimental apparatus now under
construction in our laboratory.

l mi-classical ]

We evaluate first the order of magnitude of the threshold for a simple
mode! of Rydberg atom two-photon maser.

Rydberg atoms are prepared by laser irradiation of an atomic beam in the
upper level (e > of the two-photon transition. They then cross a resonant
microwave cavity. The average atom-fieid interaction time Is tjpt. In the
cavity, the atoms may undergo a transition to the lower level (f >, We wiil
estimate the minimum atomic flux 1/tg; required to sustain a non-vanishing
fleld in the cavity (damping time tyay, = Q/w. Q : quality factor).

Typical levels configuration Is depicted on fig. 1 . two-photon transition at
frequency w/2w occurs between te > and |f » (nS,;, and (n-1)S8;/,
here). The transition amplitude Is strongly enhanced by the occurence of a
relay level 1l > [(n-1)Ps;, In fig. 1] close to the middle of the two-photon
transition,
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An Important quantity Is thus the detuning A, given by :

(E_ + E.)
na=g - —— % (1)

In a cavity containing N photons, the atoms undergo a two-photon Rabi
nutation at angular frequency 02(N) : the probability of finding the atom in
state |e > a time t after its preparation In the same state is :

P_(t) = —;— [1 + cos a (W) t] (2)

22(N) is approximately given by [1<] :

_ 20 (N) o _(N)
a,(N) = —r (3)

where ng((N) and a(N) are the Rabi nutation angular frequencies for a
field resonant on the fe > = |l > and |I > - |f » transitions respectively,
with an energy corresponding to N photons :

D D Cg
Q = eih%o \'—ﬁ_; a _ = ifr; o I—‘E

el if

Dgj and Djs are the electric dipole matrix elements on these transitions, %‘o
= \J hw/2eq5v is the fleld per photon In the cavity (effective volume v). We
assume here that atom-field coupling Is constant. This is generally not the
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case when the atoms move in an actual cavity mode. However, this
variation can be taken Into account by a mere redefinition of éo.

Rydberg atoms present features which make Q2,(N) unusually large : Dg;
and Dy are huge and one can use, In the millimeter~-wave range, a iow
order cavity having a large %o-

Moreover, the gquantum defects of S and P levels differ by about 0.5 for
ail alkalls : the detuning A Is thus rather small compared to w. It Is even
exceedingly smail for some selected transitions . the slow variation of
quantum defects with n, measured in high~resolution spectroscopic expe-
riments [1s5-18], entails that A crosses O around some n vaiue. In
Rubidium [17] and Cesium [1e] spectra, this coincidence occurs for easily
excited levels with n ~ 40. As an example, A/2m=~39MHz for the 408,,, -
39S, ,, Rubldlum transition at 2 x 68.416GHz (39P,,, relay level).

For this transition, we have Dg; = 1443 qag, Dy = 1479 qa,. Assuming
v=70mm? (cylindrical cavity in the TE,;,; mode, dlameter D=7.8mm, length
L=7.55mm), we get Qg ~ Q¢ ~ 7 107 N W/s and finally

a,(N) =B N with B = 4000 5 = (8)

The atoms experience thus a two-photon w puise during tj ¢ (30us) in a
fleld containing oniy 25 photons |

The maser threshoid Is easily obtained from these orders of magnitude.
Each atom must leave a large part of jts energy in the cavity : we must
have

Ny te "7 (5)

The N photon field is sustained by this energy Income if

tat L3 2tcav / N (6)

The threshold condition is thus :

1 m
2 (7)
tat 2B tint tcav

If the cavity quality factor Q is close to the theoretical limit for a Niobium
superconducting cavity at T = 2K (Q = 2 10%, the threshold condition
reads .
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1

tat

> 3 10° atss (8)

and the cavity contains, at threshoid, N = 30 photons only. This vaiue can
easily be obtained with a c.w. laser excitation. Moreover, the exceedingly
low values of atomic flux (iess than one atom at a time In the cavity) and
of fleld Intensity ensures that no competing process can overwhelm two-—
photon maser oscillation.

This model can be made more quantitative. Let us write the rate equation

for the mean photon number N :

1-cos a(W) t, .
5 (9)

&

- e

Cav at

The first term in r.h.s. of (9) describes the cavity losses at rate 1/tg,
the second one the energy deposited by the atoms in the cavity.

The maser operating points are the intersections of the curves repre-

senting these loss and gain terms as a function of N. Loss (straight line)

and gain (sinusoide) curves have been plotted on fig.2 for four different
values of to,, and tat-

_ A
N

t

e

Fig. 2 : loss and gain terms for a function of N for
a) tegy = Btar, b)Y togy = 12t5,
C) teay = 24tg5, d) tgoay = 48ty

Stable operating points are open-circled. Even above threshold, there is

a stable solution at N=0 : In this semi~-classical model, the two-photon
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maser does not start alone in an empty cavity. A large enough triggering
fleld must be present initially to reach a large N operating point. This
behaviour Is very <different from the one-photon maser one, which starts
alone above threshold. At last, let us quote that eq.(89) admits, well above
threshoid, many stable solutions (see curve 2d).

This model Is, of course, oversimplified. Many phenomena which might
modify our conclusions are not taken Into account, like spontaneous
emission, blackbody fileld induced transitions, Maxwelllan velocity spread,
etc.

1. A_simpl —photon

We give here a simple quantum model of this maser, taking properly into
account two-photon spontaneous emission. It will lead us to conclusions
quite different from the semi-classical ones. The other effects mentioned
above could be straightforwardly introduced In this model, but they make the
algebra more complicated and do not modity drastically the system’s
behaviour [19].

We first derive a master equation for the field density matrix p, in a way
reminiscent of the one used by Fllipowicz et al [12-13] In the one-photon
micromaser case.

We conslider that, at most, one atom interacts with the cavity field at a
time. Let t; be the time when the ith atom enters the cavity. The fleld
density matrix p at time tj47 is expressed as a function of the one at tims Y
by :

L tat

Pt )=e F(t, )P () (10)

F (tjny) Is the operator describing the fleld change due to the Interaction
with a single atom. exp {L ty; } describes fleld relaxation during ty = tj4
~- ti. L Is the well-known relaxation Liouville operator defined, in a T = 0K
cavity, by :

Lo = ‘-‘2’5 [zapa+ - a+ap - pa+a:| (11)
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(a and a* are the photon annlhilation and creation operators respectively).

in (10), we have taken into account separately the atom-fleld interaction
and the field relaxation. This approximation is justified if both eL tat and
F ({jny) are close to unity, that Is to say If tagy » 15, and If the fieid
change due to the interaction with a single atom is small.

Let us now assume that ty; is a random variable, with a Poisson
probability distribution :

-R t

at
P(tat)=Re {12)

We take here into account the unavoidable pumping fluctuations. If the
field change due to the interaction with a single atom is small enough, we
can average (10) over a great number of interactions and write :

tat L tat

] ~-R
Pti) = Io dty, Re € F(tine) P(E;)
(13)
(this approximation is reminiscent of the coarse—-grain averaging In standard

laser theories [201),
The integration in (13) can be performed, and we get .

1
Pt ) = TR F (Bine) P (%) (14)
or eise :

R [P(ti_‘_l)‘P(ti)] = Lp(ti+l)+R [F(tint) P(ti)"P(ti)J

(15)
As tj47 - t;j approaches zero (when compared to ty,y), one can replace

the r.h.s of (15) by 5, and Lo(ti+9) by Lp(tp. One thus gets a rate
equation which turns out to be formally identical to the one of the Scuily
and Lamb model [10].

F(tj,9) can be obtained from the study of two-photon Rabi oscillations.
The calculation Is straightforward in the dressed atom picture [21,22],
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The master equation finally reads :

. *
Py E)=R P t) [1-A(N,E, L) A (M )]

*
* R Py_g,mp(t) BONE; ) B (ML)
w o
“ 2 (N+M)p () + ° \{ (N+1){M+1) pN+1,M+1(t)
(16)

with
AN E) = 1 + zz:; UMt _ #] (17)
B(N,t) = -———-—————-‘Izz(_bl'"l) [em(N_z *x _ 1] (18)

The Rabi nutation angular frequency Q(N) Is given by :

2
Q .
el

(N) = A

(2N+3)

We assumed that Qig; = Q4. This Is almost the case for the actual maser
transition. Let us stress that Q{0) does not vanish, because of two-photon
spontaneous emission, and that Q(N) and the semi-ciassical frequency
Q2(N)} coincide for large N’s.

The structure of (16) Is very simple : the matrix elements pnyp are
coupled only to pn‘pme with M-N = M'-N’. We therefore get separate ciosed
differential equations systems for the Fock states popuiations pypN and for
the coherences pyn N-1 (only these elements will be used In the following
discussion) .

There are, at least, three ways to solve the equations set for the
populations pypN. First, it can be truncated at some N value much larger
than the expected average photon number, and integrated numerically. On
the other hand, when looking only for the steady state, one makes pNN=0.
PN+1,N+1 can therefore be expressed as a function of pNy N and pN-2, N-2-
One gets then recurrence equations allowing to calculate all the populations
at equilibrium.
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We show now that this master equation set can also be transformed into
a Fokker-Planck equation valld for large N's.

First we Introduce new notations : the reduced photon number n =
N/2Ngy, where Ngy = w/QR Is the number of atoms crossing the cavity
during its relaxation time, and & = 1/2Ng,. We will use 1/R as the time
unit. The equation for p,, now reads :

-

~ F
Pan = "Pnn [l—m("‘"rin'!:)l ] +

g 2
+ pn—zs,n—zs [1—m(n-28"rint“ ]

~2n pnn + 2(n+5) pn+6,n+5 (19)

The reduced interaction time Tjn¢ is given by :

2

nei
Tint - ZNex: A tint (20)
and
~ [ 2N43 T, ]
AR Tine) =22 M o WaN 1) (21)

ex ex

We then consider p,n as a function of a continuous variable n and expand
(19) In powers of 5§, a small parameter if Ng, » 1, We get :

2 2
. a 5 3 3
pnn_ -8 2n [ai(n)pnn] + 2— ;z [az(n)pnn] + O(8 )

(22)
where
a = 2 | gin® + 2 67, . sinznT —:l (23)
(0) P70t T 2 ine int
and
a 4 sin” + 2 (24)
a__(n) sin nTint n
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Equation (22) Is of the Fokker—Planck type. It Is, of course, only an
approximation to the original master equation, valid for 8 €« 1 and n » &
(i,e. valld for high pumping rates Ngy and large flslds).

The steady state solution of (22) is readily obtained as :

nn ~ Tamy P - VM) (25)

The effective potential V(n) being :

2 .n a(n')
V(n)=—TI -1 __ an (26)
[o]

a(n’)
and C a normalization constant.

The behaviour of pf’m Is thus mainly determined by V(n): pfm is peaked
around the absolute minimum of V(n). Let us stress that the extrema of
V(n), corresponding to the zeroes of a,(n), coincide with the steady state
operating points in the classical model (unstable ones correspond to a
maximum of V(n), stable ones to a minimum).

V(n) has been plotted, as a function of n, on fig.3 for different T
vatues,

0 05 1 15 n

Eig.3 : V(n) for iy, = 0.8 w/2 (&), Tipy=1.5w/2 (D), Tyt =5 n/2
(c)
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The semi-classical mode! threshold value corresponds to Tint ~ 0.9 n/2.
For Tjpt = 0.9 n/2, there is a minimum in V(n) around n = 1, but its value
ls greater than V(0) = 0. p?m is thus maximal for n=0, and the steady
state mean photon number is close to zero (in fact, (25) and (26) cannot
be used for n ~ 0 : the approximations used to get the Fokker-Planck
equation (22) are no longer valld in this case. However, direct integration
of the master equation shows {[1e] that the conciusions obtained here are
qualitatively correct).

The threshold condition is thus not the same as in the semi-classical
mode! : a minimum of V(n) for n#0 must exist (7jny 2, 0.9 n/2, semi-
classical threshold), but its vailue must be lower than 2zero
(riny 2, 1.4 n/2). Of course, this slight threshold modlfication does not
change our conclusions on the maser’s feasabllity. Let us stress at last
that, for 2 w/2 & Tint § 6.5 n/2, pﬁn correspond to sub-Poissonian statis—
tics for the field.

In the semi-classical model, the steady state solution depends on initial
condlitions (for Instance on the presence of a triggering fleld). This is not
the case here. To clarify this point, we consider qualitatively the time
evolution of the system when ppp Is initially peaked around an arbitrary ng
value. Because of the drag term a;(n)} in (22), the mean photon number
n will reach in a short time a value close to the nearest local minimum of
V (the time scale of this process turns out to be tgay). Generally, this
minimum is not the lowest one : the state reached is oniy metastable.
Because of the fluctuations f(term a,(n)), ppn Wil escape from this
potentlal well and reach a more stable one. Standard technlques [231 aliow
us to determine the time scale of this process. Passage times are typically
found around 10%tg,, (0.1s in an actual experiment).

in the case of a maser starting in an emptly cavity (ng = 0), for
Ynt 2 1.4 n/2, a fleid will bulld up in the cavity with a typical time constant
of this order of magnitude : maser triggering is no longer needed when
spontaneous emission processes are Included in the model. For
Tint % 5 /2, n=0 Is even no longer a minimum of V(n) : for such high
pumping rates, the maser starts alone with a time constant of the order ot
tcav:

The structure of the master equation for fieild coherences py N-7 Is very
similar to the one for pypN. It may also be expanded in powers of 8, and lis

Solution reads, letting g(n) = PN, N-1,
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g(n,t) = g (n) e H* (27)

where gg Is the steady-state soiution of a Fokker~Planck equation. p

reads
1 & gin2n 7.
2
3,,:52 [Tint + 4n ]+ 16 Tint [l_ 2n {1- 2n ‘rs 2t J ]
s S S int
(28)

where ng Is the mean steady state value of n, determined by (25).

The real part of p describes phase diffusion, with a typical time constant
4NgxTcay (for Tint ~ n ~ 1). The term &%/4ng in (28) corresponds to the
usual phase diffusion rate due to dissipation in one photon lasers models
[20].

The imaginary part of p corresponds to a very weak frequency shift (of
the order of 1/tggy). It can be interpreted as the effect of the refractive
index of the atomic medium.

The same techniques can be applied to the rate equations for elements
like pn, n-2. It Is thus possible to calculate the squeezing properties of the
cavity field in this model. This discussion is out of the scope of this paper,

and will be glven eisewhere [19].

it. Quiline of the experiment

We are presently buliding an experiment in order to realize a two—photon
maser. We plan to use the 408,,, - 39S,,, transition in Rubidium. We
take advantage of the weak detuning (A/2rm = —-39MH2z), and of a convenient
excitation scheme [24]. 40S leveis are prepared by a stepwise continuous-
wave laser excitation. Transitions 5S-5P,/, (7802;\) and 5P3/, - 5Dg/,
(7759,&) are iInduced by temperature tuned ALGaAs diode lasers. The
transition from S5dg;, to 40P3,,(1.26p) Is excited by a lquid nitrogen
cooled InGaAsP diode laser. 40S;,, is finally reached by a microwave
transition (62GH2z), easily saturated by a Yig 10GHz source, frequency
multiplled in a non-linear high frequency diode [2s). In spite of the

numerous steps Involved, this excitation scheme is easlily realized, since it
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involves only unexpensive and easy—-to-use solld state sources. The atomic
flux (107at/s} actually obtained is well above the theoretical maser
threshold.

The most critical part in this expseriment Is the high Q microwave
superconducting cavity at 68.416GHz [2s]. {t is precisely machined from
high purity Niobium, chemically polished to remove the damage layer,
electron beam welded and finally baked at high temperatures In uitra—-high
vacuum environment. These operations are performed at CERN (E.F.
division), and the obtained Q Is close to the theorstical B.C.S. Hmit.

The very precise (™~ 1kHz) tuning to the atomic frequency wili be
performed by eilastic deformation of the cavity's waiis.

Maser operation will be detected indirectly by monitoring the populations
of 405 and 39S levels at the exit from the cavity, using the well-known field
lonization technilque. This detection wili also provide us with a clear-cut test
of a true two-photon maser operation : the population of the relay level
39P 4/, should always remain close to zero.
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PREPARATION OF COLD ATOMS FOR PRECISION MEASUREMENTS

K.Cloppenburg,G.Hennig,J.Nellessen and W.Ertmer
Institut fiir Angewandte Physik, Universitidt Bonn
Wegelerstr. 8, D-5300 Bonn 1

Introduction

Many high resolution spectroscopic experiments are ultimately limited
by the random motion of atoms or velocity related effects. This motion
causes e.g. transit time effects or second order Doppler shifts and
broadening of spectral lines, which are not canceled by most of the
so~called Doppler free spectroscopic technigues. Atomic collision
experiments often suffer from the broad velocity distribution and the

angle spread of the crossing beams too.

A thorough solution of these general problems would be a direct velo-
city manipulation of free atoms aiming at a reduced average velocity
and a strong reduction of the temperature respectively the width of
the resulting velocity distribution.

This velocity reduction can be achieved by the light pressure force
from a resonant laser beam. In the basic scheme atoms absorb photons
from a laser beam changing the atomic momentum by #k (k=wavevector).
After a short time - typically 10 ns - the atoms spontaneously reemit
a fluorescence photon. Because of the random direction of emission the
momentum recoil from the emitted photons averages to zero whereas the
atomic momentum change by the absorptions of the photon momenta adds
up constructively to a velocity change of n-wk/M (M= mass of the atom,
n = number of absorptions) on average [1].

The resulting averaged "spontaneous"” force f (atomic momentum change

Per time} reads:

F-skl _S (1)
T

: natural lifetime of the "upper” cooling level

T
s: saturation parameter.

The expression t-{(2+1/s) is the c¢ycle time, which depends on the laser
intensity and the detuning between the laser frequency and the Doppler
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shifted absorption frequency of the atoms. This force saturates with
increasing saturation to fs.t:

Faat = hK - (2)

2t

- -
The corresponding accelerations a and asst: read

a2 bk 1s

f T 1l+2s (3)
;snt=§—)g.j;

M 27T

For simplification this interaction of photons with atoms should take
place within an atomic beam and not within a gas. In an atomic beam
almost one degree of freedom only - the longitudinal velocity distri-
bution - has to be cooled and the atoms move in a high vacuum environ-
ment collision free without heating by walls or other molecules.

The basic scheme of most cooling experiments consits of an atomic beam
and a counterpropagating laser beam. The different experimental tech-
niques differ mainly in the experimental solution of two fundamental
problems arising from the neccesary large number of absorptions and

the accompanying large change of Doppler shift.

Atomic beam cooling

when the atoms are decelsrated by the successive absorptions of photon
momentum from the counterpropagating laser beam, their Doppler shift
changes very fast and thus the atoms run out of resonance after the
accumulated shift of a few homogeneous line widths. On the other hand
the stopping process needs very many photons (e.g.~20.000, if sodium
atoms shall be stopped from an initial velocity of about 600 m/s,
using the Na-D-line) and thus optical pumping has to be totally a-
voided or counteracted.

In the first successful cooling experiments, which produced really a
slow atomic sodium beam [2), a longitudinal magnetic field with a
decreasing field strength along the beam axis solved both problenms.
Using circularly polarized sodium-Dz 1light the atoms are relatively
fast optically pumped into the magnetic sub-level 281,z (F=2, mr=2) of
the ground state, when they enter the magnetic field. This state is
only excitable to the 2P3/z2 (F=3, mr=3) level by the circularly pola-

rized cooling laser beam, forming an nearly ideal two-level system.
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When the magnetic field strength is strong enough (e.g. by a bias
field), it can compensate for imperfect polarization of the light
field and will avoid resulting optical pumping. When the laser fre-
quency is tuned into resonance with fast, Doppler~ and Zeeman-shifted
atoms at the entrance of the solenoid, they will stay 1in resonance
within the magnet during the slowing process if the magnetic field
strength decreases in such way that the changing Zeeman shift
compensates for the changing Doppler shift.

Assuming a constant deceleration a within the magnet the velocity

v{z) changes like {(starting with vo}:
vi{iz)= {ve2 - 2az)}i’/% (4}

The corresponding change of the magnetic field strength B{z) to com-
pensate the z-dependent Doppler shift by the changing Zeeman shift of
the cooling transition reads then {(for details see, e.g. [2,3]):

B(z)= Bo (1-2az/ve?)1/% + By (5)
Eb: bias field

The difference between the magnetic field strengths at both ends of
the molenoid defines the magnitude of the slowed down velocity inter-
val, and the laser detuning defines the final velocity of the deceler-
ated atoms. Atoms outside this velocity interval =~ faster atoms and
atoms slower than the final velocity - will not be affected (almost).
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As each location z within the magnet corresponds, as given in eq. (4),
to a resonant velocity, every atom within the affected velocity inter-
val will find its resonant point z and will stay in resonance till the
exit of the magnet. All atoms of the decelerated interval will thus
have nearly the same vélocity at the exit of the magnet. Therefore the
resulting velocity distribution is highly c¢ompressed to some m/s
{(s.below). The final velocity may be choosen over a broad range in-
cluding zero. In order to get the atoms at rest outside the magnet,
the laser frequency is tuned into resonance with a sufficiently slow
velocity group at the exit of the magnet, allowing the atoms to slow
down further, when they walk out of resonance [3].

In first experiments using this technique, the production of a steady
flow of cooled sodium atoms with a temperature below 100 mnK and a
density of about 10%°cm-? was demonstrated (for details see e.g.[3]).

The second general cooling scheme uses fast frequency modulation
techniques to compensate optical pumping and to keep the resonance
condition (without magnetic fields) [4].

In alkali spectra (e.g. Na) the transition #8y,z (F=2) = 2P3,3 (F=3)
does not provide a completely ideal two-level system 1in Zero magnetic
field; because of the relatively small hyperfine splitting of the
upper level and the limited perfection of the circular polarization of
the laser 1light, the atoms can also make the transition 28,2 (F=2) =
2Pa,2 (F=2) and the upper level can decay to the level 28,,2 {(F=1) which
is out of resonance. To compensate for this optical pumping a second
frequency in the cooling laser beam inducing the transition 28:,:2 {(F=1)
% 2P3;z (F=2) can repump the atoms into the level 28;,2 {(F=2) via the
transition 2Pas2 {F=2) = 28;,2 (F=2).

This second frequency can be provided as one of two sidebands of a
frequency-modulated laser beam; in the case of the sodium Dz line the
difference frequency would be 1712 MHz. For this purpose the laser
beam is, for example, sent through an electro-~optic phase modulator
[4] that is driven at half the desired difference frequency. 1In case
of a sufficient modulation index about 235% of the incoming intensity
can be transfered to the first-order sidebands.

The problem of maintaining the resonance c¢ondition for the decelera-
ting atoms is solved in this scheme by a fast tuning of the laser fre-
guency synchronously with the rapidly changing Doppler shift. This
again can be achieved by electro-optic modulation techniques, if the
laser beam with the two frequencies is sent through a second electro-
optic modulator, the driving frequency of which 1is chirped in the

right way - in the sodium experiment, for example, from 5 MHz to 1000
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MHz within about 1.5 ms. This will produce a pair of sidebands which
stays in resonance with the decelerating atoms in both hyperfine sub-
levels of the ground state, if the carrier frequency is chosen

correctly [41.

intensity

A

K .,.! l : _..1 I :
@ G N
"”—{_Tj 3 =2
EOM 1 e 2} d
B3

“ s

Fig. 2: Schematic frequency spectrum of the cooling laser beam behind
the two electro-optic modulators (EOM). The cooling and repumping
sidebands are marked 223 and 1=2.

Fig. 3 shows the experimental scheme for this experiment, the sideband
spectrum is schematically shown in Fig. 2.

In the scan method the deceleration & has to match the scan speed vL
of the laser fregquency; assuming constant deceleration the scan speed

is almost constant,

P o= - (6}

and the frequency varies linearly in time, starting periodically red
shifted at the laser frequency vs.

v (t) = vs (1+at) (7)

This frequency vas is in resonance with fast atoms ve at the beginning
of each cooling cycle. During the sideband is swept over a frequency
interval Av. these fast atoms stay in resonance and slower atoms will
get into resonance. Thus at the end of each cooling cycle the corre-
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sponding velocity interval 4v = Avi /A 1is compressed into a narrow
velocity distribution {s.below) at the final velocity vs-Av.
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Fig.3: Schematic of atomic beam cooling experiment. The cooling laser
output is fed through an acousto-optic shutter, a LiTaOs travelling-
wave electro~optic mocdulator (EOM) which provides the frequency-swept
sidebands, and an additional EOM to provide the F=1 atom recovery
sideband. The c-polarized cooling laser beam is carefully "mode match-
ed” to the weakly diverging atomic beam {~3 mrad £full angle). The
detection system for the fluorescence light is not shown.

In our experiments the scan interval was limited by our microwave
equipment to ~ 1GHz corresponding to a velocity interval of ~600 m/s.
After each cooling scan, which takes about 1 ms, the swept sideband
moves very fast within ~200 us back inte the starting position beginn-
ing the next cooling cycle., During this time fresh incoming, uncooled
atoms fly only ~1 m before they get into resonance in the next cooling
cycle. Thus all atoms slower than the starting velocity vs and within
Av will be cooled.

In the first experiments with this second scheme [4,5] the resulting
temperature within the cooled atomic beam was below 50mK with a den-
sity of 10 atoms per cm®. As the slow atoms move only a short dis-
tance during the cooling cycles, the resulting pile—up of slow atoms
forms a nearly constant flow of cold atoms as in the previous scheme.
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Fig.4: Sodium~-atomic-beam cocling using a £requency-chirped laser.

Trace a)}, coecling laser off. The D: transition shows the velocity
distribution of the F=2 ground state as well as the frequency markers
from the perpendicular probe beam. The vertical dashed line marks the
position of the F=3 resonance with zero velocity atoms. Trace b} - 4},
cooling laser sideband is swept ~1GHz (Av=590 m/s), carrying atoms to
lower velocities where they are left (blackened peaks) when the cool-
ing laser 1is cut off and the velocity distribution is measured. The
final velocity in trace b) is ~290 m/s, in trace ¢} ~40 m/s, and in
trace d) ~ -130 m/s (!). The apparent weakening of the slow-atom peak
is partly because fewer atoms are available, when the sweep starts
below the velocity distribution maximum and for geometrical reasons
{(s.below). The figures also show "actions" by the other (unused)
sidebands.

For probing the velocity distribution we used a second dye laser beam,
which was split into a Doppler free beam - perpendicular to the atomic
beam - and a beam crossing the atomic beam with a small angle (=30°,
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see Fig.3). The frequency of this probing laser was slowly tuned over
the Doppler profil of the 281,z (F=2) = 2P3,2 (F=3) transition. The
laser induced fluorescence signal was only periodically counted within
a ~50 us time interval during the fly-back time of the cooling side-
band. During this time the cooling laser beam was shut off by the
acusto-optic modulator. Thus optical pumping and transient effects
were avoided.

Because of the 30° crossing angle our velocity readout scale 1is com-
pressed by a factor cos30°=0.866. Fig. 4 shows the result. Because of
the saturation in the probe beam being 2...3 and the Doppler free beam
being <<1 the whole width of the probe beam can be explained - in
comparison to the width of the Doppler free width -~ by saturation
effects {within the momentary velocity resolution). As 10 MHz natural
width corresponds to a Doppler broadening by 6 m/s, we can estimate a
residual velocity width of 1less than 5 m/s (for the more complicated
details see [4,6]).

This result is in good agreement with our Monte-Carlo simulation of
the cooling process [7.8] and the numerical integration of the Fokker-
Planck equation [8].

Relay cooling

A scan width of 1 GHz corresponds to a cooled velocity internal of
about 600 m/s. If the fixed sideband for the transition F=2 = F=3 is
placed near the average velocity (~600 m/s) it is possible to cool
twice the single sideband cooling interval by the so called "relay
cooling” scheme.

For this purpose the frequency sweeps of the fast tuned sidebands
{cooling and flyback) have to be almost symmetric and should start at
zero or not more than 1/2 of the natural linewidth from zero. Then
both fast tuned sidebands have - alternating - the right tuning sign
and tuning speed.

Fig. 5 explains schematically the situation.
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Fig. 5:Scheme for the c¢ombined
" - . " action of both sidebands and the
Y‘E’t&y COO{‘”Q Ny carrier, to double the cooling
intervall. It is one cooling
period show starting at the top
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The “"left" sideband decelerates the fast atoms - e.g. 1300m/s = 700m/s
- down to a medium velocity, resonant with the carrier, and during the
"fly-back™ of the “"left® sideband the "right sideband" takes them over
and cools them further down together with the slower atoms - e.g.
700m/s = 100m/s. In case the atomic beam apparatus is long enough (for
23Na ~ 2m) relay cooling stops or decelerates so essentially the whole
atomic beam (for 2%Na Av =~ 1200m/s) with 1 GHz scan width. Experiments
showed that this scheme works satisfactorily, if the atomic beam is
long enough and when the laser power at this longer beam line is still
sufficient. [6].

Higher Order Sideband Cooling

In case of enough laser and microwave power it is alsc possible to use
the second order sideband for cooling.
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Fig.6: Velocity distribution of a 1laser cooled sodium atomic beam
Trace a,) cooling laser off; only the F=2 part of the velocity dis-—
tribution is shown. The vertical line indicates zero velocity. Trace
b) cooling laser on. C marks the position of the carrier frequency and
$1 and Sz mark the chirping interval and the final position of the lst
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oder (81) and 2nd order (S:z) sideband. The distance between Si1 and Sz
final positions corresponds to the 100 MHz final offset (100 MHz corr.
60m/s). In trace ¢) this offset is 170 MHz for demonstration and the
carrier position is drastically shifted to ~80 m/=s. C marks the posi-
tion of the left 1,7GHz sideband of the carrier acting on the ~ 1000
m/s faster F=2 atoms (C is in resonance with the some velocity group
in F=1 and slow F=2 atoms!) Therefore the same situation as shown in
trace b} and c¢} {left part}) repeats at higher velocities as shown in
trace 4}.

Applying a 1 GHz chirping interval for the microwave driving field of
the EOM, the lst order sideband is swept 1 GHz and the 2nd order side-
band is swept 2 GHz. Of cause the scan speed of the 2nd order sideband
is doubled too. So one has to take care that the laserpower in this
sideband is sufficient to match the conditions in eq. (3) and {(é).

In order to demonstrate that this scheme doubles the decelerated
velocity interval too, we performed the following experiment: the
laser frequency was split into a triplet by the first EOM: the
"carrier" (~80%) and two 1st order sidebands 1.712 GHz apart (~10%
each). The carrier was located at some slow velocity (velocities are
given for the F=2 population). But the chirping interval for the
second EOM was choosen to be 100-~1060 MHz (170-1060 MHz). Therefore
the 1lst order sideband stops 100 MHz (170 MHz) apart £rom the carrier
and the 2nd order sideband 200 MHz (340 MHZ) apart from the carrier
producing so two final velocity groups.

The apparatus used for this experiment was similar to the one shown in
Fig.3; but instead of using the Doppler free probe beam as zerc
marker, we retroreflected the ordinary probe beam. This produces
"mirror images” in the readout of the F=2 velocity distribution {on
top of the small F=1 population). The center between two "mirror
images" defines zero velocity. Fig. 6 shows the experimental results.
From this Figure we see that both sidebands - the 1st and the 2nd
order sideband - decelerate the atoms. That means that the 2nd order
sideband actually decelerates essentially the whole atomic beam.

The density of the two final velocity groups depends on the probing
location in the atomic beam and the position of the carrier frequency.
In trace b) of Fig.6 the carrier is in resonance with 350m/s atoms and
the 1lst order sideband catches most of the atoms and the velocity
distribution gaining so the higher density.

A Monte-Carlo simulation [7,8] can calculate the various dependencies.
Fig.7 shows our numerical result for a similar situation as given in
Fig.6. In the experiment the probing position was located at about
8;=150cm. The sideband C'and its "subsidebands" were omitted during
the calculation. The calculation shows the main features in satisfac-
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tory agreement.

o)

¢ue

Fig.7: Plot of the longitudinal velocity distribution (in arb. units)
along the atomic beam as a function of the longitudinal position s
{in em). The plot shows the steady state resgult for an experimental
situation as given in Fig.6.

Properties and Handling of Cooled Atomic Beams

As result of the numercus spontaneous emmissions, some longitudinal
momentum is transfered into transverse momentum. The resulting velo-—
city width wvr(rms) of this "transverse heating effect" by n spon-
taneous emmissions reads

vr {rms} = v+ (n/3)1/2 (10}
vr = hk/M {(11)
with
n o= 1. (2ksT/M)L/2

Vr

Ks : Boltzmann-constant
T: evaporation temperatur

this transverse velocity spread becomes

2ke Th2 k2
oMe

vr (rms) = ( yir/4 (12)
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The transverse velocity distribution of this beam may be further
reduced by transverse laser beams, the frequency of which is tuned
about one halfwidth to the red of the center frequency. Thus the
saturation of, and correspondingly the spontaneous force on, the slow
atoms by the transverse laser beams increases for the atoms which are
moving towards a transverse laser beam [9,10]. The effect will be at
maximum when the red detuning 8w is [8]

sw =Y ¢ 1*2sc 4y, (13)
2 3

v: mnatural linewidth (FWHM)

sp : saturation on center frequency.

Another possibility of transverse cooling using dipole~forces is given
in [211].

The velocity-dependent force will also reduce the final longitudinal
velocity distribution [4]: a counter-propagating laser beam, which is
tuned slightly red of the absorption frequency of the slow atoms, will
decelerate atoms, which remained faster than the average, more than
slower ones, when they move out of resonance. This laser beam could
be, for example, the carrier frequency of the cooling laser, if the
chirping method is used for cooling. This frequency may be permanent
in the cooling beam. This velocity-controlling effect is also respon-
sible for the longitudinal wvelocity width just after cooling {81.

For precision experiments it will be of special interest to separate
the cold atoms from the hot ({(fast) atoms.

Fig.8:Geometry for
atomic beam deflect
-ion by a transverse
laser beam

slow

» fast

atomic beam cylindrical lens

laser beam
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One way of separation is simply to apply a second "two-frequency"
transverse laser beam as shown in Fig. 8. If the intensity profile of
this laser beam has the correct shape, only the slow atoms will be
deflected and these atoms will show no further increase in velocity
gspread. The transverse laser beam providing the necessary spontaneous
force to match the radial acceleration ar = ve?/r (ve: average velo-
city of the slow atomic beam} has to have a saturation profil 1like

1

s{r) = (14}
vy 2
TVo 2
or for s <«1
s(ry = £¥* .1 (15)
Vr r

This means that a cylindrical lens gives the proper intensity profile
for the purpose of bending an atomic beam of slow atoms. For a beam
with 50 m/s average velocity and 5 mm diameter a lens with a focal
length of 50 mm and a transverse laser beam of 20 mm waist only a few
milliwatts are sufficient to bend the slow atomic¢ beam ~40° from the
axis [6,12]. Additionally, the transverse velocity spread will be
reduced in the bending plane as a by~product of the bending mechanism.
The result of this bending scheme is thus a slow atomic beam, the
direction of which is unconstrainedly selectable and which is unper-—
turbed by fast atoms.

One application of cold atomic beams is clearly its use for optical or
microwave fregquency standards.

The great interest in cold atoms for optical frequency standards is
twofold: reduction of Doppler effects and prolonged interaction times.
For cold atoms the second-order Doppler effect for optical transitions
may be less than 10 mHz. The interaction time of the light field with
cold atoms may well exceed the interval of 1ls, offering spectral
widths in the sub-Hz regime for selected transitions, Doppler—-free
schemes presupposed.

There are two main concepts for optical frequency standards using cold
atomie beams. The first one uses the cold atomic beam mainly for
£illing atom~traps, which form the essential frequency discriminator
of an optical frequency standard. The second one makes full use of the
monochromatic velocity distribution of cold atomic beams.

The monochromatic atomic beam may be deflected through 90° with a
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dipole magnet or a transverse laser beam (s.above). The resulting "2a-
charias fountain" atomic beam would give an ideal opportunity for two-
zone Ramsey excitation with very slow atoms ¢going a second time
through the same interaction region, when they are free falling down
again [4,12]. But also the horizontal, separated, and cooled bean is
of great interest for precision measurements in the Av/uv<10-13% regime.
Some candidate atoms are given in [10].

Other applications for cold atomic beams are clearly collision phy-
sics, surface physics, photon statistics, guantum effects (Bose con-
densation}, polarized targets or isotope separation.

This work was supported by the Deutsche Forschungsgemeinschaft.
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ATOMIC MOTION IN A RESONANT LASER STANDING WAVE
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These last few Yyears have seen major advances in the possible
ways to control atomic motion using laser light. It iz now possible to
slow down and even to stop an atomic beam [1~3], and the first
observation of optically trapped atoms has been reported [4]. It is
therefore an important task to try to describe in the most accurate way
the basic phenomena which are at the origin of exchange of momentum
between atoms and resonant light, and to interpret them in terms of
elementary processes as absorption and spontaneous or stimulated

emission of photons by the atom.

In a plane running wave, this description is simple : stimulated
emission plays no role, so that the atom only undergoes fluorescence
cycles involving the absorption of a laser photon (gain of momentum ﬁﬁ;
for the atom), and the emission of a fluorescence photon (zero average
change of atomic momentum). The average force acting on the atom is
then :

f = n ﬁkL

where n is the average number of fluorescence cycles per unit time,
which for a two level atom saturates to the value ['/2 at high laser
intensity (™! is the lifetime of the atomic excited level in seconds}.
This force is the so called "radiation pressure force" or "scattering
force" {(see for ex. [5]}.

When several plane running waves are simultaneously present, the
situation becomes more complicated. Stimulated emission can play an
important role, since redistribution of photons between the waves may
occur, via cycles involving absorption of a photon from one wave

{momentum ﬁfl), and stimulated emission of a photon into a second wave
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{momentum hﬁ;). This redistribution occurs at a rate given by the Rabi
frequency w, of the atom driven by the laser light, and then leads to
forces whose order of magnitude is given by

£ - -
~ W ‘hlk1 -k |

2
Since the Rabi frequency does not saturate with light intensity, this
force f' may be considerably larger than the force £ found in a single

plane running wave.

Our goal in this paper 1is to present various possible ways to
study atomic motion in presence 65 both stimulated and spontaneous
processes. We will consider here the simple problem of a
one-dimensional motion along 2z axis., in two plane counterpropagating
running waves. We will discuss the possibility of using such a standing
wave for damping the atomic motion, and we will study the limits of

this cooling mechanism.

At this date, three experimental groups have published results
exhibiting evidence for a cooling of free atoms in a standing wave
[6-9]. 1In the two first experiments (which were actually 2-D [6] and
3-D [7] experiments), the situation was chosen such as stimulated
processes play a weak role : the Rabi frequency ®w was smaller than the
natural width . The cooling has then been observed for a negative
detuning & = wo- o, (wL : laser frequency., atomic frequency, all in
rad/sec), |8} being of the order of the natural width. In the second
experiment [8] which has been realized in our laboratory, the situation
was reversed : the Rabi frequency was two orders of magnitude larger
than the natural width, and the cooling then occured for positive
detuning, much larger than the natural width. We will see in this paper
how to interpret these results, and in particular, the change of sign

of the detuning leading to cocoling when the laser power is increased.

This paper is organized as follows. The first part A is devoted
to a study of the problem using Optical Bloch Equation (O.B.E.). We
show how it is possible to derive from this eguation the expression of
the radiative force to first order in the atomic velocity. We also give
some examples of results obtained by a numerical calculation of this
force, valid for any atomic velocity, and based on a continued fraction
expansion of the O0.B.E. solution [12-13]. The second part deals with
the dressed atom approach to this problem, which appears to be very
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efficient to describe the high intensity limit w > [". We present a
Monte-Carlo simulation of the atomic motion of this dressed atom, which
has the advantage of handling easily fluctuations caused by spontaneous
emission processes. This simulation then gives us an estimation of the
final energy of an atom cooled by a strong standing wave. It also

suggests the possibility of observing a channelization of the atoms in
the nodes of the intense standing wave.

1. THE OPTICAL BLOCH EQUATIONS APPROACH

We shall treat here classically the atomic motion, assuming that
the atom is 1localized around a point ;, with a spatial spread A; much
smaller than the 1light wavelength A. The average force acting on the
atom at point ;, with a velocity ;, is then related to the gradient of

the atom—-laser coupling VAL(;) [(5.14] :

£f=<- Vv, (M) > (1)

rv

1.1 The Optical Bloch Equations

The atom—laser coupling can be written, for a plane standing wave
parallel to the =z axis, and wusing the RWA and electric dipole
approximations :

- —- - - w [ ™ 1
v, () = - d.E= (¢e><g1 e 't 4 |grce] & E ) (2)

This coupling is characterized by the Rabi frequency wl(z) :

Ho, (2) 4,

cos kz = ~ E.E(z) (3)

2

g is the atomic ground level and e the excited one. We have noted d the
atomic dipole moment, and we have assumed that the laser is in a
coherent state so that we can describe it classically. The coupling (3}
is then zero at the nodes of the standing wave, and maximal at the
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antinodes. Introducing now the three quantities :

_ Lot . Lt
5, = (P.g e Py, © )/2

(2]
]

tw t ~tw t
L - L .
2 (pec e Poo © }/21 (4)

S; = (Pee ~ Pag /2

where ¢ is the reduced atomic density matrix, the average force E(z,v)
can be written :

flz,v) = hk&i_ sin kz. §l(z,v) {5}

gl(z,v) is the stationary value of 5, for an atom at point z, with a
velocity v along 0z.

The evolution of the three guantities sl,Sz,S3 is given by the
following Optical Bloch Equations (O.B.E.) [15] :

?1 = - 5 r/z + 3 s2
?2 = - 3 S1 - S2 r/z2 - W (2) Ss (6)
s = wl(z) s, - rs -r/2

From these equations, one can in principle determine §l(z.v) for any 2z

and v and therefore calculate the value of f(z,v}.

1.2 The force on an atom at rest : the dipole force

Let us consider first the case of an atom at rest. The solution
of (6) is then easily obtained :

_ ] wl(z)/z
Sl(z.O) = (5)
52 + I2/4 + uf(z)/z

so that
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- d 1-’.8 (n): (z)/2
£{(z,0) = - — |— Log {1 + —m (6)

dz 2 82 + r2/4
This is the so called "dipole force"”, which derives from a perieodic

potential, so that the average over a wavelength of E{z,O) is zero. It
has been suggested to use such a force to trap atoms near the nodes or
the antinocdes of the standing wave, depending on the sign of 3 [16-18].

1.3 The force on a slow atom : radiative cooling

We consider now low velocity atoms. The force f(z,v) can then be
obtained by an adiabatic expansion of the forced solution of O.B.E. The
parameter € of the expansion is the relaxation time [™' of the atom,
divided by the time A/v needed for the atom to travel over a
wavelength :

£ = —— = —— — {(7)

If & is small compared to 1, one can assume that the internal
state of the atom follows guasi-adiasbatically the external motion. The
force can then be written to first order in v :

flz,v}) = £{(z,0}) - m7v v (8)

where 7 is given by {S] :

(3] it
mr = | dv — <[F(z,7) , F(z,0)]> (9]

0 H
F(z,v) denotes the force operator - dv, /dz {(in Heisenberg point of
view), and the correlation function of F contributing to eq. 9 can be

evaluated by means of quantum regression theorem. The result of the
calculation is [5] :
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my = - Hk? S o (1 - s) - 2 E s?] tg® k
g z (10)
1+ s)® 82 +12/8 r

where the saturation parameter s is :

w? (z}/2
s = ————— = 4 s cos?kz (11}
82 + I'?2 /4

s, denotes the saturation parameter obtained if only one of the two
travelling waves is present. This damping coefficient m7T can now be
averaged on a wavelength, and we obtain [13] :

— 2 2518
my = —-fk

{ so(l + 250)
(1 + 450)3’2 52 + 2 /4

)
-2 = (1 + 6s + 65°* -~ (1 + 4s )3/2)} {(12)
1‘" 0 Q 0

This average coefficient describes the efficiency of a standing wave
for damping the atomic motion.

In the low intensity case (so & 1), one gets :
- 25T
my = Hk® s, —— < Hk? (13)
52 + 't /4

This is a well known result which can be obtained by adding simply the
two radiation pressures of the two counterpropagating waves {20]. It
leads to a cooling when the detuning 8 is negative {optimal value
- ['/2} which can be interpreted by noting that due to the Doppler
effect, the atom in such a configuration is more sensitive to the
counterpropagating running wave than to the copropagating one : it is
therefore decelerated.

At high intensities (s, » 1) and high detunings (|5} » I'), the
force changes its sign : it becomes a damping force for positive
detunings, and an accelerating one for negative detunings. Furthermore
one notes that the order of magnitude of nT changes, The damping
coefficient can be much higher than the 1limit obtained in (13). Onme
indeed gets :
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lo |
» Hk? (14)

w, >8P r = mr ~ Hk?

This change of sign of the force, and the increase of the damping
coefficient is an evidence for the predominant role of stimulated

emission in this regime.

1.4 Case of arbitrarily high velocities

When the atomic velocity is arbitrary, it is no longer possible
to get an analytical expression for the force. But it is possible,
using a continued fraction expansion method for (6), to get a numerical
estimation of the force (5) [12-13]. Using this method, we have plotted
some results in fig. 1. At 1low intensity {(fig. l.a : & =+ [/2,
51 = ['/3), one can check that the force is nearly equal to the sum of
the radiation pressures of the two counterpropagating waves. In
particular, it is never a damping force for such a positive detuning.
When the intensity increases, this conclusion is reversed, at least for
low velocities, as it can be seen in fig. 1.b,... l.e, plotted for
increasing detunings 3 and Rabi frequéncies &i. For ;1 and & large
compared to the natural linewidth I', the c¢urves have the following

characteristics :

(i) For low velocities (kv « I'/3}), as expected, the force varies
linearly with the velocity, with a proportionnality coefficient given
in eq. (12}.

(ii} The force is maximum for velocities such as kv ~ ['/3, and
can Dbe much higher than the radiation pressure #k['/2 found if only one
of the two <c¢ounterpropagating waves 1is present. For example in
fig. l.e, for @ = 10 3 = 500 ', the maximal force is ~ 40 {(fk[/2).

(iii) The force then decreases as 1/v until v reaches a critical
value v, whose value increases with & and o .

(iv) When v 1is 1larger than V. resonances appear in f(v)
{(Dopplerons resonances [21]) and the sign of the force changes : it
becomes a cooling force for § ¢ 0 and an accelerating one for & > 0.
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It is difficult to interpret all these characteristics in the
framework of this theory based on a continued fraction expansion. On
the contrary, we are going to see now that the dressed atom point of
view gives in the strong intensity limit a clear interpretation for the
various characteristics of the force.

2. THE DRESSED ATOM POINT OF VIEW [22,23]

2.1 The microscopic Sisyphus myth

In a strong standing wave, the energies of the dressed levels,
i.e., the eigenstates of the atom plus laser—-field system, oscillate
periodically in space, as the Rabi frequency wl(z) in (eq. 3). Figure 2
represents these dressed states for a positive detuning (w, > wo). At a
node [w1(2) = 0], the dressed states |l,n» and |2,n> respectively
coincide with the unperturbed states |g,n+l1l> and |e,n> (an atom in the
ground state g or in the excited state e, in the presence of n+l or n
laser photons). Out of a node {w, (z) # 0] the dressed states are linear
combinations of }g,n+l> and {e,n> and their splitting %{8’+a§{z)}x is
maximum at the antinodes of the standing wave. Consider now the effect
of spontaneous emission. An atom in 1level |[1,n> or [2,n> —each
containing some admixture of je,n>- can emit a spontaneous photon and
decay to level {1,n-1> or |[|2,n~1>~ each containing some admixtyre of
|g.,n>. The key point is that the various rates for such spontaneous
processes vary in space. If the atom is in level |l,n>, its decay rate
is =zero at a node where |[1,n> = |g,n+l> and maximum at an antinode
where the contamination of |1,n> by le,n> is maximum. In contrast, for
an atom in level {2,n>, the decay is maximum at the nodes, where {2,m>
is egual to |e.,n>. We can now follow the "trajectory” of a moving atom
starting, for example, at a node of the standing wave in level |1,n+l>
(fig. 2). Starting from this valley, the atom climbs uphill until it
approaches the top (antinode) where its decay rate is maximum. It may
jump either into 1level |1,n> (which does not change anything from a
mechanical point of view) or into level |2,n>, in which case the atom
is again in a valley. It has now to c¢limb up again until it reaches a
new top (node) where |2,n> is the most unstable, and so on. It is clear
that the atomic velocity is decreased in such a process, which can be
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Figure 2 : Laser cooling in a strong standing wave. The dashed lines
represent the spatial variations of the dressed—atom energy levels
which coincide with the unperturbed levels (dotted lines) at the nodes.
The solid lines represent the "trajectory" of a slowly moving atom.
Because of the spatial variation of the dressed wave functions,
spontaneous emission occurs preferentially at an antinode {(node) for a
dressed state of ¢type 1 (2). Between two spontaneous emissions (wavy
lines), the atom sees, on the average, more uphill parts than downhill
ones and is therefore slowed down.
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viewed as a microscopic realization of the "Sisyphus myth" : Every time
the atom has climbed a hill, it may be put back at the bottom of

another one by spontaneous emission.

Such a picture can be used to derive quantitative results for the
average force acting on the atom [22]. These results appear to be in
perfect agreement with the ones obtained by the continued fractions
method, provided that the atomic velocity is smaller than v,
{results i, ii and iii). For velocities higher than v, . one has to
modify the previous picture and to take into account the Landau-Zener
transitions, which can occur at each node of the standing wave, from
one 1level fi,n> to the adjacent level |j.n>. For certain velocities,
the probability amplitudes for such transitions interfere
constructively for two successive nodes, and the radiative force then
exhibits a resonance. In ref. [24], using a method close to the dressed
atom approach, the authors show how to calculate, with a relatively

good precision, the position of these resonances.

2.2 Monte-Carlo simulation of atomic motion in a

strong standing wave

In order to determine all the characteristics of the cooling of
atoms in a strong standing wave, in particular the final temperature of
cold atoms, we have developped a numerical simulation of the atomic
motion in the standing wave. This simulation consists of doing an
integration step by step of the motion presented on fig..z. Each step
consists in two phases : we calculate first the new position and the
new velocity of the atom as a function of the old position and velocity
and of the force seen on the dressed level occupied at this time. Then,
we randomly decide an eventual change of dressed level, with a
probability 1law given by the dressed atom theory. Note that here the
atomic velocity is not constant but it varies when the atom goes uphill
or downhill., This is in contrast to the continued fraction method in
which one imposes a constant velocity to the atom in order to calculate
the force. Actually the two methods give similar results as soon as the
atomic kinetic energy mv?/2 is much larger than the height of the hills
~ ﬁwllz. On the contrary, when the two parameters are on the same
order, the numerical simulation of the dressed atom picture is a priori
much closer to reality than the continued fraction method.
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Examples of results of this numerical simulation are given in
fig. 3 for Cesium atoms irradiated by a laser wave resonant with the
resonance line (A = 852 nm, [~! = 30 ns). The parameters of the
standing wave are ai =6 8 = 80 I'. This value of a& is close to the one
we had in the experiment of ref. 8, and the value of & is then chosen
in order to optimize the force for velocities around kv =T (see
fig. 1). 1Initial velocities are randomly c¢hosen with a gaussian law,
centered on v = 0, and with a full-width-half maximum (FWHM) of 5 m/s.
One sees (fig. 3.a) that in a time of the order of 10 ps, these
velocities <concentrate in a peak of FWEM 1.2 m/s, which corresponds
precisely to a kinetic energy of the order of the height of the hills.
The typical time constant of this damping is 2 ps, which is in good
agreement with the one deduced from eq. 12 (1.8 ps). Atoms are then
more or less trapped in the wvalleys of fig. 2, and the cooling
mechanism described above becomes much 1less efficient. The atomic

kinetic energy mv?/2 then satisfies :

mv? fo,
o

2 2

(15}

This has to be compared to the well-known limit of radiative cooling in

/
a weak standing wave [ 5] :

nv? 4
— {16}
2

Pt

2.3 Channelization of atoms

Equation (15) gives the atomic energy after a time of few Tt
(eq. 12). Actually, we have observed numerically (fig. 3.b) a new
decrease of the atomic energy, with a much Jlarger time constant
( 100 ps). Simultaneously atoms accumulate at the nodes of the
standing wave, as it can be seen on position profiles of fig. 3.c. The
final curve, after an interaction time of 500 ps, gives Az ~ A/40 and
Av ~ 0.2 m/s (the product Ax.Ap is then 10 $ so that we are at the
limit of a classical treatment of atomic velocity).
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Figure 3 : Numerical simulation of atomic motion (Cesium atom) in a
strong standing wave (;1 =68 =80T0).

3.a. Evolution of velocity profiles

3.b. Evolution of average quadratic velocities

3.¢. Evolution of position profiles (modulo one wavelength).
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This accumulation of atoms at the nodes of the standing wave,
that one can c¢all “"channelization", <4is not strictly speaking a
trapping, but rather a dynamical equilibrium. Atoms o¢scillate around a
node on a level of type 1, then jump on a level of type 2 on which they
“travel™ over a fraction of wavelength to fall back on another level of

type 1, near another node.

The first part of this cooling process has been observed in our
laboratory, with experimental conditions very close to the ones chosen
here [8]}. The experimental results confirm the theoretical predictions
exposed here. On the contrary, the channelization of atoms in the
standing wave has not yet been observed. Several techniques could be
considered for this. First an observation of the atomic spectrum of
fluorescence or absorption should give a hint for the spatial
distribution of the atoms. Second, one could think of a Bragg

diffraction technique for probing such a spatial ordering of atoms.

To conclude, let us emphasize the potentialities of these
“"stimulated" forces for many applications, for instance for slowing
down an atomic beam : as we have seen, the forces that can be realized
are nmuch greater than the usual radiation pressure which has been used
up to now for this purpose. The stopping distance could then be reduced
by at least one order of magnitude, which would be of special interest
for the realization of compact atomic clocks using slow atoms.

*  permanent address : Department of Physics, State University of New
York, Stony Brook, New York 11780, U.S.A.
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1. Introduction

Experimental breakthroughs such as cooling of one electromagnetically trapped ion [1]
and realization of magnetic [2] and all-optical {3] traps for neutral atoms have demonstrated
tangible mechanical effects of laser light on atomic particles. The recent "quantum jump"
observations [4-6] relying on laser cooling are examples of the ultimate sensitivity of
spectroscopy, a single atomic particle. It may be, though, that most applications of light
pressure will instead strive for high resolution, utilizing the low temperature to overcome the
second-order Doppler shift [7]. To increase the signal-to-noise ratio, such experiments would
normally be carried cut on many particles. But, aside from applications, the very combination of
many particles and low temperature may in itself give rise to novel phenomena. These are the
theme of our paper.

Numerical simulations of a one-component plasma [8,9] have quite a while ago indicated
that, at low enough temperatures, the Coulomb interactions force it to crystallize. Analogous
crystallization of ions in electromagnetic traps [10,11] and in heavy-ion storage rings [12] have
been discussed. The ensuing "Wigner crystal" would represent a new form of condensed
matter. Its properties may be unusual, moreover the interaction between the particles of the
frozen plasma are known and can conceivably be handied theoretically. Rigid few-ion clusters
would also facilitate experiments on collective interactions with light of a smaii number of non-
moving atoms. Until now such experiments have simply not been possible in the optical
domain, an unfortunate circumstance as individual field quanta and associated quantum
effects can bs detected easily only at optical and higher frequencies.

At this writing clusters in ion traps have, however, not been observed. Whether unideal
conditions of the experiments or fundamental physics are responsible, is not clear. Only very
recently have we initiated {13] the theoretical study of laser cooling of interacting many-particle
systems using the hypothetical periodic crystal as the first example. We have shown that,
owing to the interference of light scattered from different ions, the laser only couples to a smalil
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fraction of the phonon modes. In exchange, the coupling is so strong that the cooling rate per
particle in the crystal is qualitatively the same as for a single trapped ion. In this paper we
generalize the model of Ref. 13 to an arbitrary cluster with small-vibration excitations around
the equilibrium. In particular, the statement that the cooling is "qualitatively the same" as for a
single ion, is made precise. The analysis emphasizes the importance of the interactions
betwean the small-vibraticn modas, but these remain unexplored.

The prospect of a nearly ideal Bose condensate to quantitatively test and sharpen the
theoretical understanding of many-body physics has driven intensive investigations into spin-
polarized hydrogen [14], so far without decisive success. Magnetic and all-optical traps for
neutral atoms, which offer sub-mK temperatures and density not curbed by the Coulomb
repuision, may in the long run deliver a new boost to the pursuit toward Bose candensation
[15-17].

In this paper we analyze Bose condensation of trapped atoms. We also reiterate our
suggestion [18] that, when two traps containing Bose condensates are brought close enough
to each other, an oscillatory exchange of atoms between the traps emerges which is governed
by the phases created in the spontaneous symmetry breaking associated with the Bose
condensation. Finally, we discuss the Bose condensate in a trap as a test bench of the very
fundamentals of statistical mechanics.

In the rest of this paper we expand on these synopses. Crystallization of trapped ions is
covered in section 2, and Bose condensation in a trap is the subject of section 3.

2. Crystallization of trapped ions

Assume a cloud of N ions resides in a harmonic trap in which the oscillation frequencies
of a single ion along the directions of the three coordinate axes would be v;, i=1, 2, or 3.
Denoting the ith orthogonal coordinate of the ion o = 1,...,N with x@ and the full coordinate
vecior with X<, we write the total potential energy of the ion system

2

ai e 1 1 i, 2
V(s ‘})=8’“”ot§ﬁ\x“-xb\ oz o m

When the temperature is lowered toward zero, the ions settie to a configuration which
gives the global minimum of the potential energy. As an example, the projection onto the 1-2
plane of the configuration for N = 18 ions that we believe represents the global minimum (but
we cannot prove it) is shown in Fig. 1. Here we have set e2/4ney = M = 1, and chosen vy = 0.7,
vo = 1.3, and v4 = 2. Remarkably enough, the contiguration does not have the reflection and
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inversion symmetries of the trap itself.
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Figure 1. Projection onto the 1-2 plane of the equilibrium configuration of 18

ions, for 62/4“80 =M =1,v4 =07, vp=1.3, v3=2. The configuration does not
have all inversion and reflection symmetries of the trap.

Nonetheless, rigid clusters of ions have never been observed. It is an empirical fact that
cooling of many-ion clouds stops at temperatures higher than cooling of a single ion, too high
for crystallization. Spurious coupling of the kinetic energy between the micromotion and the
secular motion of the ions, which is believed to take place as a result of the imperfections of
the trap geometry [19], may be the reason. But it may also be that the collective motion owing
to the Coulomb interactions of the particles at some point simply prevents the cooling, so that
crystallization is impossible as a matter of principles.

The latter is the issue we shall address, albeit indirectly: We assume that the ions have
crystallized already, and study the dynamics of light-pressure cooling [20]. Clearly it is at least
a necessary condition for crystallization that laser cooling can maintain the crystalline state.

Let us assume that the remaining thermal excitations in the ion cluster can be treated as
small vibrations . We thus expand the potential energy of the ion cluster up to second order in
the displacements from the equilibrium {X*},

Vb =V + 5 2, D E X @)
pik

with
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As a symmetric matrix D has got real and, for a stable configuration, non-negative eigenvalues.
We denote them by Mv2{k), where M is the mass of the ion and v(k) is the frequency of the

eigenmode k = 1,..., 3N. The corresponding orthonormal eigenvectors £%(k), in particular,
satisfy the completeness reiation

>80 Pl =38, .8, @
k .

We finally quantize the small vibrations of the ion cluster by writing the coordinate i of the
ion ¢ as

ai i il oi T
X = X +2k‘, /2—Mv(k)r; ®) (b, +b,), (5)

where by is the annihilation operator of the excitation of the mode k. We are now in a position
to write down the complete Hamiltonian for the system ions-+light:

H t t
. w; 2> <2+ Zq, Q, a8, + zk‘, viK) by,

i % 53 [ 2> <1 EMx® +h. c.] : ®

o

Here the first term gives the internal energy of the two-level ions with upper and lower levels 2
and 1 and optical transition frequency w, the second term is the energy of the photon modes
labeled by the index q which stands for both the wave vector ¢ and the polarization state, the
third term is the energy of the small vibrations, and the final term is the dipole interaction. E®
denotes the positive frequency part of the quantized electric field, and d is the dipole moment
matrix element of the ion between the states 1 and 2. As the electric field in the Hamiltonian (6)
is evaluated at the positions of the ions x® which in this theory are quantized dynamical
variables, the possibility of affecting the center-of-mass motion of the ions by light, i.e., recoil
effects, are fully included.

We take the light intensity to be jow enough that a photon absorption is always followed
by spontaneous emission. Corresponding to the two interactions, second-order perturbation
theory is a suitable method for attacking (6). We are especially interested in the changes of the
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vibrational state. As the recoil effects proportional to the photon momenta are generically
small, we shall only consider processes that are lowest nonzero order also in the photon
momenta. These are cycles of absorption and spontaneous emission aided by absorption or
emission of precisely one vibrationai quantum in one of the modes k.

We do not work out the details of the perturbation theory [13,21], but merely cite the finai
result [22]: The rate of a transition where the ion system starts out with ny vibrational quanta in
the mode k and makes a transition to a state with ny + 1 quanta is found to be

Rn—on+1) = (n +1) Sy e? m22
8aMv(k)c
% ﬁnnl + '%u} . 2Re A(,n] )
A2+"{2 {A + vk )2 + 72 A+iNA+v) -iy |

Here x is the Rabi frequency corresponding to the laser field strength, y the natural linewidth of
the optical two-level transition of the ion, A = w - Q is the detuning between the laser frequency
Q and the ions' transition frequency w, e stands for the propagation direction of the laser
beam, and the symbolic functional notation A specifies the treatment of the various directions
in the integral over the directions of the scattered photons,

A= I dn [1-(m5) lz e XPrte - more wg(k) vEhk) . (8

The rate for a process in which the vibrational quantum number decreases, R{n, — n-1},
is obtained from (7) by replacing n+1 with n, and v(k) with -v(k). The rates R{n, — n.t1)
represent within our assumptions all transitions where the center-of-mass motion of the ions
may change, hence they completely determine both the time evolution of the cooling and the
ensuing steady state.

It is clear from {7) that all modes k can be cooled efficiently at the same time only it v{k} <
v for ali k. Cooling of any mode k depends on transitions where the two-leve! resonance is
aided by absorption or emission of vibrational quanta, and near-resonance is possible for all
modes only if the range of the mode frequencies falis within the linewidth of the transition.

Except for the resonance factors, the second significant ingredient of (7) are the

functionals A. The spatial phases « exp{-iX®-q) in (8) indicate that they convey the
interferance of light scattered from different ions in the cluster. The functionals A also contain
the vibrational eigenmodes E%i(k). Although more apparent in the omitted derivation of (7) than
in the result itself, the eigenmodes detarmine how the photon recoil kicks on individual ions
add coherently to produce a change of the state of the collective mods k. All told, the factors A
depend in a complicated manner on the equilibrium configuration of the ions. In view of the
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shapes of the clusters, see Fig. 1, they can usually be analyzed only numerically, with great
labor.

However, using the properties of the coefficients A one very general conclusion can be
drawn. Let us first assume that all vibrational frequencies are below the transition linewidth, so
it is meaningful to expand (7) into a power series of v(k). Second, as a technical assumption
we ignore the angular distribution of fluorescence from each individual ion. In practice this
implies that we replace the factor in the square bracket inside the integral in (8) with its
average over all angles, 2/3. Now, whatever is the distribution of the vibrational quantum
numbers in the mode, the average energy is

E, = <Av{i)n,> =fiv{k) <n,>. ©)

Because the rates R are linear in ny, the rate of change of energy of the mode k may be written

dE
= = <WRIROE-E) -R0En)]>
2
Fx2ye? <k k .k 4AE [k k]}
= — A +A_ 2A, - —— | A -A . 10
41{MC2(A2+’Y2) nn "’ 'ee an R (A2+’Y2) 80  en ( )

The new coefficients A are closely related to the old ones,

AI:N - jdn 2 o i(X%-XPy-(e - n)avc WE(K) v-EB(K) | (11)
o.f

The crucial assumption we are going to make is that the total excitation energy is at

every instant of time divided equally betwsen the modes. Hence, the energy in any mode k
satisfies

, 1
Ek.zE:mZEk' (12)

The closure of the eigenmodes & * , EG. (4), gives

;A';ﬁ;/x';ﬁ anN; ;A‘:ﬁo, (13)
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and summing both sides of Eq. {(10) like in (12) we thus obtain

dE _ 2ty |, 2AE
2 (14

ot aMmci(az+yty L A4y

Equation {14} makes no reference to the mode structure, so it applies equally well to
collective modes and to vibrations of a single ion. It basically states that if a single ion can bs
cooled, then so can an ion cluster, This was already the point of Ref. 13; here we have
presented a more general and precise statement and proof.

Leaving aside a number of technicalities, the necessary condition for (14} is that the
mode-mode interactions keep all vibrations at the same temperature, E, = E. As a
counterexample we pointed out in Ref. 13 that, in the absence of mode interactions and for a
periodic crystal where the crystal momentum is conserved, a traveling laser wave would only
couple to a fraction of the phonon modes which scales with the number of ions as N-'3,
Besides, half of the modes would be cooled and half of them heated. We reiterate our
conjacture that the mode-modae interactions, or the absence thereof, is a major factor affecting
the cooling of interacting many-ion systems.

In summary, two features of the fundamental physics of ion clusters may be detrimental to
cooling to temperatures low enough to achieve crystallization: First, the range of the collective
excitation frequencies of the ions may be so broad (2 ) that all modes do not couple efficiently
to light. Second, owing to the interference of light scattered from different ions, the cooling is
distributed unevenly among the modes, and some modes may even be heated. !t is relatively
easy to check [22] that for the present-day experimental parameters the range of vibrational
frequencies should not be a source of concern. In contrast, the mode-mode interactions cannot
be discussed within the harmonic model of smal vibrations where the modes are independant,

3. Bose condensates In light-pressure traps

Let us consider a noninteracting Bose gas in an isotropic three-dimansional harmonic
oscillator potential which gives the atoms the oscillation frequency v.

The Bose-Einstein statistics determines the number of atoms in the state n =(n,\n,,n;)
with energy g, = fiv {ny+ny+ny), at temperature T, as
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1
Nn =W' (15)
e -1

To ensure positive occupation numbers, the chemical potential 4 has to remain negative . As

Nn{j1) are monotonously increasing functions of u, the total number of atoms outside the
ground state n = (0,0,0) is limited from above by

N, = Z N, (1=0), (16)
n1 n2 n3>0

a finite number. In the "high-temperature” limit kT/hv » 1 the sum can be carried out by
converting it to an integral and choosing g, as one of the integration variablas. The result is

E!!
N,=1.202 | == . (17)

If the number of particles exceeds N, Ng = N - N, atoms are packed in the ground state which

in the limit p —» 0 can accommodate an arbitrary number of them. This is known as Bose
condensation.

Our argument is a simple variation of the treatment of Bose condensation of a gas of free
atoms-as offered in elementary statistical-mechanics textbooks, except for the problem of the
thermodynamic limit [23, 24]. Rigorous phase transitions are traditionally thought to take place
in the limit N — oo, in apparent contradiction to {17). For instance, in a gas of free atoms one

usually lets N — oo keeping the density n = N/V constant, and obtains a condition for the
density rather than particle number .

Using the limit of the harmonic oscillator wave functions for large quantum numbers

{w,{0) = {nynanz) 172 | [25)), the density of the gas at the trap center at the Bose condensation
threshold is easily found to scale with the dimensional quantities as

2

2
MkT
ne = Z,Nn(u=o> o) «x('gé‘) , (18)

pracisely like the critical density of the free gas. Obviously one can express the condition for
Bose condensation in terms of the intensive quantities n and T and simultaneously let N — e
only if the thermodynamic limit is defined by demanding that N - oo, v — 0 in such a way that
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N3 remains constant. The thermodynamic limit involves tampering with the trap parameters
themselves. Another unpleasant price to be paid is that the spatial dimension of the ground-
state wave function scales with the frequency v as v-12, and hence the density of the Bose
condensate «« Nv32 = N v3-v-32 diverges.

The temperature that can be reached using laser cooling is of the order of T ~ fiy/k, and
the order of magnitude of the oscillation frequency in the recent all-optical trap for sodium [3]
was v ~2nx100 kHz, thus the critical atomic number becomes N, ~ 10%. For the reported
number of atoms, 500, Bose condensation is not expected. A severe problem with scdium, and
probably all other elements except hydrogen as well, is that it will not remain a gas in thermal
equilibrium at pK temperatures. On the other hand, spin-polarized atomic hydrogen is
metastable against formation of Hp, molecules, but the transition wavelengths do not permit
laser cooling or trapping at today's state of the technology. It may take quite a while before
Bose condensation in atom traps will be observed.

Nevertheless, we disregard the experimental odds and proceed to pursue our theme. in
elementary statistical mechanics the macroscopic population of the ground state,

<by by> =Ny, (19)

is adopted as the signature of Bose condensation. However, like in laser theories which predict
the Poissonian photon statistics [26] but not the coherent field commonly employed to model
the output of an ideal laser, we suggest that {(19) is not the whole story. We assume that the
annihilation and creation operators of the atoms in the ground state of the trap themselves
acquire nonzero expectation values,

-id 1 i
<b0>=e‘ /N, ,<b,>=8 \/ﬁ_o (20)

The random phase ¢ is attributed to spontaneous symmetry breaking, a concept familiar from
the theory of (presumably) another Bose condensate, 4He below the A transition [27].

The issue is, does the phase ¢ have observable consequences. in the laser analog we
would ask, how can we tell the field from a laser has a phase. There appsars o be no simple
answer. It is well known that the usual square-law detectors do not make any distinction
between different fields having a Poissonian photon statistics, so photon counters are not
sensitive to the phass.

But two lasers can beat against each other, revealing their phase difference. Guided by
the analog, we imagine that two traps containing Bose condensates are first far aparn, and are
then brought close enough to each other to exchange atoms. When the traps are separated,
their ground-state wave functions y; and v, are degenerate. The interaction of the traps at the
close distance d is taken to be strong enough to lift the degeneracy, but too weak to mix
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oscillator states that were not degenerate initially. The reievant Hamiltonian for the ground
state thus reads

H =fix@y b +bb). (21)

Here by, b, are boson operators that annihilate atoms with the wave functions y;, y,, and x is a
parameter charactenzing the interaction strength. A qualitative estimate for x is obtained by
multiplying the overlap of the wave functions v and v, by the oscillator frequency v, giving

K ~vexp{-%}. (22)

The frequency k decreases very rapidly with increasing distance between the traps; e.g., for
sodium and with v = 2nx100 kHz, the time scale 1/x is one hour ford = 3 pm.

The Heisenberg equations of motion of the boson operators under the Hamiltonian (21)
can be solved trivially. We adopt for each trap separately an initial condition of the form (20},
and obtain for the number of atoms in the left trap the expression

<b/WbH)> = N,cost+N, sin’kt + /NN, sin(¢, ~¢,) sin2xt . 23)

The result shows that if the initial number of atoms is different (N; =N}, the atoms start
oscillating between the traps, as one might expect. Much more surprising is that the atoms
start oscillating even though their number is the same. The phenomenon is governed by the
phases ¢; the amplitude of the oscillations of the number of atoms measure the phase
difference ¢;-¢,- We are describing a macroscopic quantum phenomenon associated with
spontaneous symmetry breaking, very much analogous to the {DC) Josephson effect [28].

Experimental demonstration of Bose condensation may be very difficult, and construction
of the double trap is probably even more demanding. Also, the trap scheme operates on
neutral particles which do not directly couple to electromagnetic fields. Analogs of the practical
applications of the Josephson effect are thus not obvious. The trapped atoms couple to gravity
and acceleration, and the oscillation frequency « is extremely sensitive to the separation of the
traps; but we do not envisage new-generation iaser gyros or meter sticks.

Instead, we forward both a single trap and the double trap as minilabs for theoretical, and
later maybe experimental, studies of the very fundamentals of statistical mechanics. The
interactions of spin-polarized hydrogen atoms are weak. However, in a trap the density of the
Bose condensate tends to infinity at least in the thermodynamic limit we have described, so
even weak interactions may profoundly affect the Bose condensate. In fact, the thermodynamic
limit itself is a most interesting problem. The number of particles in the trap may be varied, and
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may be small in the many-particle standards. What happens to Bose condensation and to

spontaneous symmetry breaking under such conditions is at present to a large extent
unknown.
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EXPECTATION VALUES, Q-FUNCTIONS AND EIGENVALUES FOR DISPERSIVE OPTICAL BISTATBILITY

H. Risken, K. Vogel
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D~7900 Ulm, Federal Republic of Germany

1 Introduction

Optical bistability has become an important field in quantum optics, see for
instance [1-4] for reviews. A fully quantum mechanical treatment of optical
bistability requires the solution of the master equation, i. e. the equation of
motion for the density operator. For the model of Drummond and Walls (DW) [5]
describing dispersive optical bistability we discuss two methods for solving this
master equation. The DW model has the advantage that only the operators of the cavity
1ight mode enter in the equation of motion of the density operator. Besides this

simplicity it is a nonlinear and nontrivial model.

The most important solution is the stationary solution of the master equation.
This golution was already obtained by DW using a complex P-representation of the
density operator. The complex P-function as well as the positive P-function have been
introduced and further investigated by Gardiner [6]. As was shown by DW expectation
values of the 1light operators can be expressed in terms of generalized Gauss

hypergeometric series.

The next important gquantity of the master equation for the density operator is
its lowest nonzero eigenvalue. Without fluctuations we have two stable states for
appropriate driving fields and system parameters. With the inclusion of fluctuations
transitions between these two stable states are possible., The lowest nonzero
eigenvalue determines the transition rates ?etween the two states. For the model of
DW no analytic results are known for the eigenvalues. Therefore a numerical procedure
i8 needed for determining the lowest nonzZero eigenvalue. In this manuseript two
methods are presented by which some of the lowest real eigenvalues are calculated.
(An extension to the calculation of complex eigenvalues seems also to be possible).
In the first method [ 7] we expand the density operator into eigenstates of the system
Hamilton operator. Then one obtains a system of coupled differential equations for
the matrix elements of the density operator. If we restrict ourselves to the slow
motion of the density operator only the diagonal elements of the density matrix need
to be taken into account in the small cavity damping limit. The lowest nonzero
elgenvalues as well as some other low real ones follow from the equation of motion of

the diagonal matrix elements.
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In the second method [8] we transform the master equation into a Fokker-Planck
equation (FPE) for the Q-function of the density operator, see (4.7). Because the
diffusion matrix is not positive definite or semidefinite it is not an ordinary FPE
which can be interpreted as describing the Brownian motion of a particle in a
suitable potential. We have termed such a FPE a quantum-Fokker-Planck equation
(QFPE}., For a non positive definite diffusion matrix we may still have a stable
stationary solution. An illustrative example is the equation

L 3 3 3 3¢
= = [ —(x, -ax)) + —(x_tax, )+ —-q— | W, (1.1)
9t Bx? 1 2 3x2 2 1 8x$ axg

which has a stable stationary solution if the conditions g <1 and (1+q)2/(1-q)2 <1+a2

are fulfilled. By applying the matrix continued fraction (MCF)} method for solving two
variable FPEs [9] we obtain the stationary solutions as well as the lowest nonzero
real elgenvalues and some other low real eigenvalues of the QFPE for the Q-function.
The eigenfunction corresponding to the lowest nonzero eigenvalue is also calculated.
The method is not only applicable for pure quantum fluctuations where the number of
thermal quanta Ny is zero. It 1is also applicable to the case Ny >0 where the
detailed balance condition for the complex P-furiction is no longer wvalid and

therefore a stationary solution is hard to obtain.

The present paper is organized as follows. In Chap. 2 we present the DW model as
well as the classical equation of motion without fluctuations. Next in Chap. 3 we
shortly review the procedure for the small cavity damping limit. In Chap. 4 we
present the QFPE for the Q-function and outline in Chap. 5 the MCF method for solving
it. Finanlly in Chap. & stationary Q-functions, some real eigenvalues, the
eigenfunction for the lowest nonzero eigenvalue as well as some expectation values
are given. It is further shown that expectation values as well as the elgenvaluel can
also be obtained by applying the MCF-method to the Glauber-Sudarshan P~function.

2 Model and Basic Equations

By expanding the polarization up to third order, by including a coherent
classical driving field, by adding losses due to cavity damping and by making the
rotating~wave approximation DW obtained a master equation for the density operator of
the light field inside the cavity. In a slightly different notation this master

equation takes the form

o = -i[H,p] + KLir[p] y (2.1)
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where H and Lir are given by

H = -gafa + xa™@a? - Fla+ah) (2.2)

L, [p] = 2apaT - paTa - aTap + 2n [[a,p],a?] . (2.3
ir th
Here @ = ) =, is the difference between the frequency of the classical driving field

F and the cavity frequency, x 1s the imaginary part of the third order

susceptibility, « 1s the cavity damping constant, nth is the number of thermal quanta

+

and a’' and a are the creation and annihilation operators for the light field inside

the cavity.
From (2.1) we obtain for the complex amplitude
* t
a = Tr(ap) , a = Tr(a'p) (2.4)
a = iga-ka-21x Tr(ata?p) + iF . (2.5)

By replacing Tr(ata2p) in terms of the expectation value (2.4), 1. e. by ata? we
arrive at the classical equation whithout fluctuations

a = [iQ-K-Zixa*a]a‘FiF . (2.6)

By using the normalized time t, amplitude a, intensity T =a'a, damping constant ¥ and
driving field F defined by (a>0)

~ ~ — = - ~ 1

t = qt, a=/yo0, I= ()1, € = x/f, F= §fx/n'F (2.7)
(2.6) is transformed to the normalized form

dasdt = [1(1-2a"a) -%)a+1iF. (2.8)

It follows from {2.8) that the following connection between ]ﬁ[ and I 1s valid for
the stationary state (da/dt =0, see also [5])

IF| = /i[e2+ (1-2D)2] . (2.9)

According to DW the stationary solution is unstable between the turning points, see
Fig. 1. Bistabilty occurs if we have turnig points, i. e, for

F e (B < /14924 (1-382)3/2 [3/3) (2.10)
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Fig, 1: Stable (solid lines) and unstable solutions (I)'/2=|g| (broken lines) of

(2.8) as a function of the normalized driving field ¥ for k=0 (1), k=0.2 (2),

€=0.4 (3), k=1//3 (4) and x =0.8 (5)

3 Small Cavity Damping Limit

For vanishing k the system will remain in an eigenstate of H if it was initially
in such a state. Therefore the eigenstates of H denoted by ]m), i, e.

H|m) = Emlm) (3.1

will play an important role. By expanding {m} into Fock-states {n> these eigenstates
can be calculated [7]. As was further shown in this reference the slow motion of the
density operator p is given by the diagonal elements of the density operator

Py = (m|o}lm) (3.2)

in the small cavity damping limit for K<(|Em-En|. From (2.1) one can derive the

following Pauli master equation for P, [7]

(3.3)

Py = 2o<[g w(asm)p, —gw(mﬂ)pm] = 2ngm2 Py

where the transition probabilities w{f+m) are given by
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in a logarithmic scale as a

w(aem) = [(m|a|2)|2(1en, )+ |(m|at|ey|2n, . (3.4)

These transition rates are easily calculated by using the expansion of the
eigenstates |m) in Fock states [7]. The real eigenvalues, which scale with 2¢, are

the eigenvalues of the matrix

Woo = witom) —Ew(mm}am (3.5)
oceuring in (3.3). In Fig. 2 some of these lowest real eigenvalues are plotted as a
function of the driving field. As was shown in [7] stationary expectation values as
well as the Q-function can alsc be obtained from (3.3) in the small cavity damping
limit.

4 Quantum-Fokker—Planck Equation

Any normally or antinormally expectation value of the light field operators a and
at may be obtained from the characteristic functions

L S
eiB a elBap}

- - 3 sa¥ ot
Beg) = B*(g) = Tr{ » AB) = BT() = TrielfRiB A ) (4.1)
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by appropriate differentiation with respect to B and B*. The Fourier-transforms of
these characteristic functions

*_%
Pt(a) = 772 [e 1B e B pr(g) q2g (4.2)

are the Glauber-Sudarshan P-function and the Q-function, see for instance [10].
Because the equations of motion for the P- and the Q-function derived later on differ
only by + signs, we have used in (4.1,4.2) and will use later on the notation

Pla) = P (a) ; Qo) = PT(a) . (4.3)
The Q-function can be expressed by the density operator according to
Qa) = P7(a) = <a|p|a>/7 , |a> = coherent state (4.4

whereas the density operator p itself can be expressed by the Glauber-Sudarshan
P-function [11,12] by the relation

p = [ e><a| P(a) a%a . (4.5)

Normally and antinormally ordered expectation values are obtained from the P- and Q-
function by integration

<aTnaly . ]a*namP(a)dza ; <Mty = [a*namQ(a)daa . (4.6)

Because of squeezing [13] the P-function does not exist in general. As will be seen
later on the expansion coefficients of the P-function into a complete set, however,
do exist. (Also its Fourier transform F(B) does exist.) In order to derive an-
equation for these expansion coefficients we may nevertheless use the equation of

motion for the P-function.

From the master equation (2.1) the following equation for the P=P*- and
Q=P “~function was derived [5]

pt 3
¥ .- —(-ka+ 10a+ 21(131)ya —21xa2a*+ iF) pt
at Ja

2
- =(-xa - 10" -21(1%1)xa" + 214" % - 1F) PE
da

32 1 1, a?p% 2
71y —a2PE + 2¢(n ht5¥3) + 1y 3 a 2pt |
da* t 2 2 Ba*aa Ba*2

(4.7)

The upper signs are valid for the P-function, the lower ones for the Q-function. In
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real notation with
o= a, +1(12 (4.8)

(4.7) takes the form (sumation convention for the 1 and 2 index)

opt 3 4.x 3? bE pt
3t aaiDiP *Baia iJP ! (4.9)

where the drift and diffusion coefficients are given by

t . vy - _ 2,.2
D ko, - fa, 2(1:?)xa2+2xa2(a1+a2)

1 1

o - 2 2
D3 ka, + Qa, +2(1¢1)xm1 2)(:»1(:»1 to5) +F ,

1.1 X 1 1
E o el + Xp 2_ 2 . el
DF, = #xagay + 5(ng+5¥32), D, = :2[0;1 az], D3, = Fxaqa, +2(nth 5¥5). (4.10)
It is easily derived from (4.10) that the diffusion matrix is not positive definite

if the intensity 1s large enough, i. e.

pE pt_ -

+ )2 - [y
11022 (D12) 0 for a o ay oy > (nth+2¢2). (4.11)

27X

Because the diffusion matrix 1s not positive definte or positive semidefinite
everywhere, (4.9) cannot be interpreted as describing the Brownian motion of a
particle in a suitable potential and therefore no simple simulation of (4.3) is
possible. For this reason (4.9) was termed quantum-Fokker-Planck equation {QFPE). By
doubling the phase space [6] it may be possible to derive a FPE with a positive
definite diffusion matrix and a simulation is then possible [14]. (By .addding
Langevin noise forces to {2.6) Graham and Schenzle [15] and Haug et al. [16] obtained
a FPE for dispersive optical bistability with a positive definite diffusion matrix.
It is similar to (4.7) for n., >>1.) To apply the matrix continued fraction method
(MCF method) it is more appropriate to use the intensity I and the phase ¢ defined by

I='a*a= a12+mg, a=a1+ia2=/fei¢ (4.12)

as variables. Egs. (4.7,9) are then transformed to

apt 3 3 3
" {—E[—ZKI+K(2nth+1 1) +2F/Isin¢) - 5;(9~2x(1-1)¢x+/17008¢)

2

92 K pt
+|<(2nth+1¢1) -1 F2 X8¢BI 21( int 5 2) a‘t]z} . (4.13)
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5 Solution in Terms of Matrix Continued Fractions

For the P=P*- and Q=P ~function we use the real expansion

o

PE(I,¢) = § {agexp(—I/Is}Lg(I/Is)
m=0

o

+n§1./_s

[a cosng - by sin n¢) exp(- -I/1) (171 )"*’%"(1/1 b, (5.1}

where L:(I/Is) are the generalized Laguerre polynomials. (An expansion of this type
was already used in [16,17].) The scaling intensity IS is arbitrary but will be
chosen such to achieve good numerical convergence of the expansion (5.1). The factor
1//n] was added to reduce the numerical errors for the inversion of the matrices. In

the next step we insert (5.1) into (4.13) and obtain the following recurrence
relations for the expansion coefficients

:0 1 1.1 0o _ 0
a, 2F// mb (thz 5 I) ma- 2s<mam

A . n+1 n~-1 _ EE l l” n — n
al (rs /Is(n+1))mbm_1 + F/n/Is L3 Is(nth+2:¢2 I may | - 2k(mn/2)an

-n{-2 +y(2I_+1)(2m+n) + x(21_-221)} b” + 2nmy(I_41) b" +2—Xn(m+n+‘l) N
s X s m Rig m=1 Is m+1

oL n+1 _ n-1 _ 35 l - n
bn (rs /1, (+1))m al™} ~F /n/1 ] af) Is(nm+2 5-1 ) mbn_. - 2¢(mn/2)p]

ni{-0 + y(2I_#1)(2m+n) + y(2I _-2+13} 2" - 2nmy(I_#1) al -Z—Xn(m+n+1) al
X s~ X s m xig m-1 I m+1 °

) (5.2)
The normally or antinormally ordered moments (4.6) can be expressed by the
coefficients of the expansion (5.1) for the P~ and Q function and vice versa. We have
for instance for the P-function

_ 137200 _ gt foy o o 12(20 40
<a> = w17 [ao ibo) . <a'a> = wlI (ao a1J (5.3)
and for the Q-function
L3721 _ ol Tos o cants 212 272 (20 _a0) .
<a> = mI7 (ao 1b0] R <a'a> = <aa'>-1= wIg (ao a1] 1. (5.4)

It should be noted that the normalization
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fP(a)dza = fQ(a)dza = fPi(a)dza =1 (5.5)
requries ag = 1/(Isn) in both cases. If squeezing occurs the expansion (5.1) for the

p-function does not exist, though the expansion coefficients of the P-function do
exist. The eguation of motion for the expansion coefficients of the P-function (5.2)
determine these coefficients, In principle, the P~function and the corresponding QFPE
can be avoided by only using the the master equation {2.1) and the connection between

moments and expansion coefficients for the derivation of (5.2).

In (5.2) only coefficients with adjacent indices are coupled. By introducing
column vectors of the form
1

0 1
(] (am, am, bm

2 2
m » an, bm,...) (5.6)

we can cast the recurrence relations (5.2) into the tridiagonal vector recurrence
relation

e, = Qe .+ Qe+ Qe L, (5.7)
where Q; and Qm are matrices following from (5.2). By investigating the Brownian
motion problem in tilted periodic potentials Vollmer and one of us had derived
tridiagonal vector recurrence relations of the form (5.7) [18]. In these references
the stationary solution, eigenvalues, eigenfunctions as well as some other
instationary solutions of an eguation of the form (5.7) have been obtained by
calculating appropriate matrix continued fractions (MCF), see also [9] Chaps. 9 and
11 for a review. The same MCF method can be applied to (5.7). In order to calculate
the matrix continued fractions, the expansion (5.1) has to be truncated at a large
but finite index n = L, so that the matrices Q, Q¥ in (5.7) have the dimension
{2L+1)*(2L+1). Furthermore, the infinite continued fractions have to be replaced by
their Mth approximants. This means that the expansion (5,1) is also truncated at the
index m=M. The truncation indices L and M have to be chosen such that the final
results do not change within a given accuracy if L and M is increased. The explicit
structure of the matrices Qm' Q; and the details of the numerical procedure will be

presented in a future publication.

6 Results

First we discuss some stationary expectation values. The average amplitude |<a>|
and the classcial amplitude vI={a| as a function of the driving field are plotted in
Fig. 3. The average value <a> calculated with the P-function (5.3) agrees with the
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Fig. 3: The absolute amount of the average amplitude (solid lines) and of the
classical amplitude, i. e. |a| of Fig. 1 (broken lines: stable, dotted lines:

unstable) as a function of F for x/2=0.1, n =0, € =0.001 (1), «=0.1 (2) and
€ =0.4 (3) (all quantities are normalized according to (2.7))

same value (5.4) calculated with the Q-function and with the analytic expression
derived by DW.

In order to decide whether squeezing occurs we Introduce the guadrature phases

1 t - fa-at i
X z(a-*a 1. x 21(8 a’} , [x1,x2] 5 (6.1)

1 2

and calculate their variances

1
O = §<x1xk XX - x> . (6.2)

The matrix elements of o can be expressed in terms of <a> -<a*>*, <a?y = <aT2>* and
t

catay = <aa®> -1, see (5.3). Instead of (6.1) we can also choose new operators ' and
y2 connected to x1 and X, via a 'rotation’
Y, = X%, cos¢+x,8iné, Y, = ~x; 8in¢ +x,cos ¢ (6.3)

in such a way that o is diagonal. This choise is equivalent to the dilagonalization of
the 2%2 matrix o. Let us call the lower eigenvalue of o Ayf and the higher one Ayg.
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Fig., 4: Variances Ay1, Ay2 and the rotation angle ¢ as a function of the driving
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Fig. 5: Stationary Q-function for F=0.2, x/8=0.1, ©=0.1 and nthao. The contour

lines are Q=0.02, 0.04,..., 0.12 (solid lines); Q=0.,005, 0.010, 0.015 (broken
lines); Q=0.01665 (line through saddle point, dotted line)
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If for a state we have Ay? <1/4 this state is called a squeezed state. In this case
Ayg must be greater than 1/4 because the uncertainty relation Ay?Ayg 21/16 must be
valid for any state. The rotation angle ¢ as well as the varlances Ay1 and Ay2 as a
function of the driving field F are shown in Fig. 4. As seen we get squeezed states
for F 2 0.3. The eigenvalues of the variance matrix have a maximum approximately for

those F where the Q-function has fwo peaks of equal heights, compare Fig. 5

Fig. 5 shows the stationary distribution Q{a)} for a fleld strength F where two
peaks are clearly visible. The results are similar to those obtained by the method
discussed in [7] for the small cavity damping limit. In contrast to that case an
asymmetry with respect to the real axis occurs for finite damping. Because of the
squeezing the P-function does not exist. If one tries to sum up the expansion (5.1)
for the P-function, the result oscillates and depends on the 8caling intensity Is as

well as on the truncation indices L and M.

In Fig. 6 we have plotted some of the lowest nonzerc eigenvalues calculated from
(5.2) with the MCF method. For the value x/Q=0.001 and x/R=0.11 we got within the
accuracy of the plot the same result as in Fig. 2 which was calculated by
diagonalizing the matrix (3.5). Even the small ripples on the left part of Fig. 2
have been reproduced. We also get the same eigenvalues for both P-and Q-function. The

lowest nonzero eigenvalue is connected with the escape rate [7]. Thus also the decay

1
¥

(1 i
YISI T L]

10-2

IIJ_I
l‘ll

L
¥

0 0.2 =~ 0.4

Fig, 6: Plot of the lowest real nonzero elgenvalues divided by 2¢ in a logarithmic

scale as a function of F for yx/2=0.1, x=0.,1 and ngp =0
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Fig. 7: Unnormalized eigenfunction for the Q-function belonging to the lowest nonzero
eigenvalue for the parameters of Fig. 5. The contour lines are equidistantly spaced.
The Q=const >0 lines are the solid ones, the Q=const <0 lines are the broken ones
and the nodal curve Q=0 is shown by a dotted line

rate agrees for both functions. This is of course an essential feature of a fully
quantum mechanical theory. As remarked by Drummond [19] in previous calculations on
absorptive optical bistability approximations were made which are not consistent with
fully quantum mechanical calculations. These calculations lead to tunneling rates

which - depending on the representaticon used - differ by orders of magnitude.

In Fig. 7 the eigenfunction for the Q-function belonging to the lowest nonzero
eigenvalue is shown the for parameters of Fig. 5. Near the maximum and minimum the
contour lines agree quite accurately with the contour lines near the two maxima in

Fig. 5. The nodal line in Fig. 7 separates the two‘maxima in Fig. 5.

Oscillating Variation of Transition Field

The lowest nonzero eigenvalue has a minimum at a field approximately in the
middle of the bistable region. The transition of the average stationary amplitude
from the lower branch to the upper branch also occurs approximately at the same
field. In the stationary state this transition field ﬁtr may be defined by the
condition that the real part of the average amplitude <a> vanishes at Ftr' For small

damping constants a strong oscillating variation of this field with respect to the
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Fig. 8: The field Ftr at which the real part of <a> vanishes as a function of Q/y for

Nep =05 € =0.001 (1) and k = 0.1 (2)

the parameter Q/y was observed, see Fig. 8. (This plot was obtained from Eq. (5.17)

of [51). Near integer values of @/x, F,_ reaches very low values for very small K. By

tr

moving away from these integer values, F increases very sharply to values which are

not very much affected by changing . Igu;eems that this effect is a typical guantum
effect stemming from the discrete energy levels Em of the Hamilton operator {2.2}. By
increasing G/x a new elgenstate between the state which evolves from the vacuum state
for F=0 and the minimal energy state occurs at integer values of Q/y%, see also Fig.
2 and Eq. {(4.8) of [7]. It was found by the MCF method that the lowest nonzero
eigenvalue at the transition fleld Ftr has a larger value at and very near integer
values of Q/y for small cavity damping. {The method for calculating the eigenvalues
described in Sect. 3 and in [7] does not work for integer or near integer Q@/y values.

Here also nondiagonal matrix elements of p must be taken into account),

7 Conclusion

In conclusion we have solved the QFPE for the Q- as well as for the P-function
with a non positive definite diffusion matrix describing optical bistability with the
matrix continued fraction method. Expectation values, the squeezing parameter and the

elgenvalues for both functions agree very accurately. The lowest nonzero real
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elgenvalue has a minimum approximately In the middle of the bistable region. An

appreciable oscillating variation of the location of this minimum with the ratio of

the detuning to the parameter of the nonlinear susceptibility was found for small

cavity damping. Furthermore, the stationary Q-function as well as its elgenfunction

belonging to the lowest{ nonzerc eigenvalue have been obtained. The calculation of

timedependent correlation functions by the MCF method seems also to be possible.
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BERRY’S PHASE AND THE PARALLEL TRANSPORT OF POLARIZATION

Zofia Bialynicka-Birula
Institute of Physics, Polish Academy of Sciences,
Lotnikow 32/46, 02-668 Warsaw, Poland

1.INTRODUCTION

Last year, a simple optical experiment confirmed the existence of
the geometrical phase of the wave function predicted by Berry1 in 1984.
This, so called Berry’s phase, is a general property of quantum systems
evolving in time in adiabatically changing environments.

Originally, Berry considered Hamiltonian systems for which the
state vectors evolve according to the Schridinger equation,

iWoagfw> =H |v> (1)

and the Hamiltonian H(E(t)) depends on a set of external parameters R(t)
changing slowly (adiabatically) in time. At any given time the Hamilto-
nian has a complete set of eigenvectors, denoted by [n(ﬁ(t)]>,

HR(t)) |n(R(t))> = E (R(t)) |n(R(t))> . (2)

In the adiabatic approximation we assume that the system prepared at
time t=0 in one of the discrete eigenstate, 1n(§(0))>, of H[ﬁ(d}) will
cling to ™ the same'" eigenstate )n(ﬁ(t}}> during its evolution, povided
[n(R)> is a regular and single-valued function of R at least in the
part of parameter space travelled by the system. It is well known that
during such an evolution the wave function will acquire the so called
dynamical phase factor, exp[- %f; dr En(R(T}}l, which depends on the
time of evolution. Berry discovered an additional phase factor which
depends on the path travelled by the system in the space of external
parameters but not on the time of the travel.

1f the state vector |$(t)> at time t>0 is to be directed along
fn(ﬁ(t])> (according to adiabatic approximation) then, in order to sa-
tisfy the Schr&dinger equation, [¥(t)> would have to contain a phase
factor exp(iyn(t)) {(in addition to the dynamicg} phase factor) to com-
pensate partly for the change of the vector |n(R(t))> resulting from
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the change of parameters ﬁ(t). The phase factor exp(iYn(t)) compensates
only that change of ]n(ﬁ(t)]> which is directed along ln(ﬁ(t])> s

Yo(t) = i < (R(t))} Ypn(R(r))> R, (3)

If the parameters % traverse a closed path C, then the phase Yn
is given by the line integral along C,

va(€) = i e Ten(R)> -ak, ()
C
and is independent on how this path is traversed in time. Using Stokes
theorem one can transform the line integral into the surface integral
over the surface S bounded by the contour C,

>
Y,(C) = -Im Jdo~vR x <n(R) | an(§)> . (5)
S
The r.h.s. can also be expressed by the matrix elements of the gradiant
of the Hamiltonian in the parameter space,

<n(R) |VRH(R) [m(R) >x<m (R) |7 H(R) |n(R)>

¥, (C) = -1mjd3~z

(6)
{ mfn [Em(ﬁ)—Encﬁ)lz

This equation shows a somewhat suprising feature of Berry’s phase, na-
mely, that it depends on those values of external parameters (inside
the contour €} that were not experienced by the system. The dependence
on the external parameters is nonlocal, like the nonlocal dependence on
the magnetic field in the ordinary space in the Bohm-Aharonov effect.
The denominator in Eq.({6} signals also the importance of the degenera-
cies that may occur for some values of R inside the contour C.

The discovery made by Berry is quite general. One can look for
his geometrical phase in many areas of physics from gauge-field theo-
ries, through the nuclear physics to the molecular physics. Berry, him-
self, explored several situations in which the geometrical phase could
be measured. One of the simplest is the motion of a neutral particle
with a magnetic moment, e.g. a neutron, in a magnetic field ﬁ[t) that
slowly changes its direction tracing a closed circuit C. Using Eq.(6)

Berry showed that the particle wave function would apuire a phase,

‘Yn(C) = -n { d3-§/B3 = -n Q(C), (7)
5
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where n is an eigenvalue of the projection of particle’s spin on the
direction of the magnetic field, 2.8 - the adiabatic invariant; Q(C)
denotes the solid angle subtended by C at B=0. (§=0 is the point of
degeneracy.) The phase yn(C) could be detected in the interference ex-
periment involving two beams of particles: one, which experienced the
changing magnetic field and another, which avoided it.

Later, Berry2 has extended the adiabatic method from Schrddinger
theory to Maxwell theory. In this case the role of the changing exter-
nal parameters is played by the components of the dielectric tensor of
a birefringent and gyrotropic medium in which the light beam propagates.
Berry’s phase resulted in the changes of the polarization of light
which, again, could be measured in the interference experiment.

Strictly speaking, in the case of the light beam we have rather
to do with the classical analog of Berry’s phase. This classical analog
was studied by Berry3 and by Hannay4 who found in 1985 an additional
change of the angle variable resulting from an adiabatic evolution of
the classical system governed by an integrable Hamiltonian. Recently,
Gozzi and Thacker5 showed a close connection ( a correspondence) bet-
ween Berry’s quantum phase and Hannay’s classical angle.

So far, the only experiment in which Berry’s phase was measured
and its topological properties were verified has been performed on
light beams and not on systems described by the Schrddinger equation.

2. OPTICAL MEASUREMENT OF BERRY’S PHASE

The idea of the experiment came from Chiao and Wu6 who predicted
that the linearly polarized light beam travelling through a one-mode,
helically wound optical fiber will have its polarization rotated. The
angle of rotation is a direct measure of Berry®’s phase for the photons.
Here, like in the case of neutrons in a magnetic field, we again deal
with the transport of spin along the particle’s trajectory. Helicity
{the projection of spin on the wave vector) is an adiabatic invariant.
Since the photon is a massless particle, its spin is always directed
along its momentum (the wave vector). The helicity quantum number is
either +1 or -1, If the fiber is not too sharply kinked, the helicity
remains unchanged during the passage of photons through the fiber. For
the light propagating along the optical fiber the role of external
fields or forces (the magnetic field B for neutrons) is played by the
changing characteristics of the medium along the trajectory, which
change the photon momentum. Thus, the wave vector itself plays the role
of the adiabatically changing parameter in Berry’s theorem. Chiao and
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Wu used the analogy between the projection of spin on the magnetic
field, 3.8, for neutrons and the photon®s helicity, E-i, to predict
the change of the phase of the photon wave function. When the optical
fiber makes one loop, the photon wave vector traces a circular closed
path C in the reciprocal space. The photon wave function for helicity
» acquires a phase

Y(€) = -x 2(0), (8)

where (C) is the solid angle subtended by the circuit C at %=0. (i=0
is, again, the point of degeneracy.) The changes of the phase will be
opposite for opposite helicities; for light that was initially linearly
polarized this means a rotation of the plane of polarization.

The experiment proposed by Chiao and Wu was succesfully carried
out by Tomita and Chiao7 at the AT and T Bell Laboratories. They used
a 180 cm long, one-mode optical fiber. They inserted it in a Teflon
sleeve and they wound it as a helix. At one end the beam of light from
a He-Ne laser was injected through a linear polarizer. At the other end
the second polarizer detected the rotation of polarization. The experi-
ment was repeated -many times for different shapes of regular and irregu-
lar helices. It was found that the plane of polarization rotated by the
angles that varied from fractions of the radian up to 6 radians. The de-
pendence of this angle of rotation on the solid angle Q(C) was found to
be strictly linear, as predicted by Eq.(8). Thus, not only Berry’s phase
for photons was measured, but its topological nature was verified.

3., THEORY OF RELATIVISTIC SPINNING PARTICLES

In the experiment performed by Tomita and Chiao, Berry’s phase
for photons manifested itself in the rotation of polarization resulting
from its parallel transport around a closed circular path in the momen-
tum space. One can understand this phenomenon (as well as the experi-
ment on neutrons in the changing magnetic field, proposed by Berry) on
general grounds recalling the action of the Poincaré group in the theo-
ry of relativistic spinning particles. This approach is similar in spi-
rit to that of Chiao and Wu. Instead of introducing in the Hamiltonian
adiabatically changing external parameters which control the motion of
a particle one.can study the changes of the particle’s momentum which
reflect the changes of the enviromment. The motion of a particle through
external fields in the adiabatic limit can be visualized as a series of
Poincaré transformations. Therefore, I will now study the properties of
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such motions to uncover the universal geometrical reason for the ap-
pearance of Berry’s phase for spinning particles. This Section of my
lecture is based on our recent publication.

I will consider a relativistic particle of mass m and spin s.
The components of its wave function satisfy a set of differential equa-
tions {e.g. the Dirac equation, the Proca equation, the Maxwell equa-
tions). Every solution wa(x} of such relativistic wave equations can
be expanded into plane waves,

bal) - 2 [artu, Gy Bone P v B0 5GP ()

where x=(%,t), p«x=E t-ﬁ-?, Ep=/m2+§2 , dI' is a Lorentz invariant mea-
sure on the mass hyperboloid,

dr = —dp—s , (10)
ZEP(ZW)

and ua(ﬁ,l)e_lp'x and Va(E,AJelp'x

wave equations with possitive and negative frequencies, respectively,

are plane-wave solutions of the

and ) labels different helicity states. In the case of electrons and
other spin % particles ua(ﬁ,k) and Va[ﬁ,k) denote bispinors, for pho-
tons - polarization vectors {or polarization tensors). The helicity
basis is used because it enables one to treat simultaneously the mas-
sive and the massless particles. In the limit m»0, the spin operator
% cannot be defined, and only the notion of helicity survives.

The amplitudes fl(ﬁ,k) and fz(ﬁ,k} describe the independent deg-
rees of freedom of the wave field wa(x); all the constraints imposed by
the wave egquations have been fully taken into account.

For photons the role of ma(x) is played by the electromagnetic
tensor of the radiation field fpv(x). Since in this case the solutions
with negative frequencies are simply complex conjugate of the respec-
tive solutions with positive frequencies, the amplitudes fz(ﬁ,k)‘axe
not independent of fl(g,l); one must set fz(g,k)sz(ﬁ,k). That is al-
ways the case for particles which have no distinct antiparticles. For
simplicity, I will consider now only this case, and I will omit the
subscript 1 of f(E,A). Thus, any wave function in ordinary space-time
is fully characterized by one set of functions f(g,l) in momentum space.
The momentum space is restricted to the mass hyperboloid for massive
particles, or to the cone for massless particles. The helicity amplitu-
des f(ﬁ,k) may be called the particle’s wave functions in momentum
space.

The decomposition of the electromagnetic field tensor into plane
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waves has the form:
- > > ) % (T > -ikex
fuv(x) J dr [euv(k)f(k,+1) + euv(k)f(k, ]e + Cc.C. {(11)

The complex antisymmetric polarization tensor euv(ﬁ) can be expressed
by the complex polarization vector g(k),

eoi (B) = 10(R) e;(K) = - &5 5500, (B), (12)

where m{k)=;§1.

The complex polarization vector 3(?) satisfies a set of algebraic
relations which follow from Maxwell equations and the normalization
conditions,

k.8(%) = 0, (13a)
Ex@ (k) = -iw(K) 8(K), (13b)
(-8 = &Kk, (13¢)
2x(K).&(K) =1, E®&E&) = o0, (13d)
3x(R)xE(K) = -ik/uw(k) (13e)

The 10 conserved quantities that serve as the generators of the
Poincaré transformations {the energy H, the momentum ?, the angular
momentum M, and the generator of the preper Lorentz transformation i)
can be expressedg as the following bilinear combinations of the heli-
city amplitudes £(3,0),

H = ijdr £5(5,2) E £(3,1), (14a)
B - inP £5(5,0) B £(3,1), (14b)
T = i]dr £ (5,00 -if x B+ 2/p 1£(5,4), (14c)
§ - inr @00 iCT B, + By B /2] £3,0)
- Ai’jdr £ B0 x 3,,.0/p°1 £@,07), (144)
where §7 is the set of three spin matrices in the helicity basis.
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In Eqs.(l4c,d) there appears the "covariant derivative" D in
momentum space, which has the form:

D=y +ixg®, (15

where ¢ is an ordinary gradient with respect to D and the real vector

2 (D) is an analog of the vector potential. The helicity amplitudes

f(P,1) are determined up to a phase factor, since the polarization func-

tions ua(ﬁ,k), va(ﬁ,x) or e v(?) are also determined up to a phxse fac-

tor. The presence of the covariant derivative D in the expressions {14}

for generators makes these expressions explicitely invariant under the

change of phase of f(P,1). It also helps to split the angular momen-

tum ¥ into two parts: one orthogonal to the momentum ﬁ (orbital angular
>

momentum) and one parallel to p (helicity).

Our calculations of generators yielded the following expressions
for 4 (Pp) for spin % and spin 1 particles:

o 1 .
= -p,,0 1 16
alP) = 3 PPy (Pz,-P,0)  for spin i, (16a)
- e p3 .
a(p) = _—_z—T(pzi-pl:O) for spin 1, (16b)
p(py+p;)

which are singular along a line. For photons the vector &(i) was cal-
culated from the equation:

a(k) = iet(k) v e (k). (17)

The curl of &(5} has the form of the magnetic field of a mono-
pole of a unit strength located at the origin in momentum space,

v x a(p) = p/p°. (18)

The motions of .a particle in space-time,viewed as Poincaré
transformations, result in the action of the appropriate generators
on the helicity amplitude f(ﬁ,k). In the case of rotations it is the
action of the angular momentum operatdr. For rotations around the
z-axis, we have:

M, £(p,2) = [ -ip x D +2p/p 1, £(B.1). (19)

The rotation around a fixed axis will be considered in the next Section

in relation to Berry’s phase.
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4. THE PARALLEL TRANSPORT OF POLARIZATION

Let us consider now a particle moving with a constant energy and
a slowly varying momentum. In this case the changes of the momentum are
due to pure rotatiomns. To make contact with the optical experiment on
Berry’s phase I will calculate the change of the phase of the wave fun-
ction f(P,r) for the 2w rotation around a fixed axis, i.e. for a circu-
lar closed path in momentum space. One can view this problem as a para-
1lel transport of a vector along a closed path - a classical problem
of differential geometry.

In order to directly apply the methods of differential geometry,
the function f£(P,1) will be represented by a real Z-component vector
Fa(ﬁ,z) whose components are the real and the imaginary parts of £(D,A) -

The covariant derivative of the vector field Fa(ﬁ,l) is:

_ a b

D, FAE,0) =[v; ¢ 2 B PP (20)

According to Eq.(15), the affine connection Fiab(ﬁ) has the form:
> a
Py @) = 20 () ey, (z1)
a . . . . 2 _ 1 1

where € p 1S the antisymmetric matrix: e 1= 1= -¢ 2 0 €7 T 0,
522 = 0,

The curvature tensor Rijab derived from this connection is:

el
o
n
ar

a a _ . . a a c ~ a c
i i T35 "% Tip * T e Ty, - Ty Ty

i

A { Vi &j

X V5 oay ) ey . (22)

The nonvanishing of the curvature tensor in the momentum space is
the reason for Berry’s phase to appear; the curvature causes the rota-
tion of the vector Fa(ﬁ,l) when it is transported along a closed path C
in momentum space. The angle of rotation is given by the integral of
the curvature tensor over the surface spanned by the contour C,

hb = £ 2 jda-( VX3 ) = £ A Jd5-51p3 =+ 1 (C), (23)
5 S
where Q(C) is a solid angle subtended by the contour C at p=0; the sign

depends on the orientation of the contour.
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The rotation of the real vector Fa(ﬁ,k) means a change of the
phase of the complex function f(ﬁ,k) - Berry’s phase.

For photons the angle of rotation (23) is exactly the angle of
the rotation of the linear polarization.

5. FINAL REMARKS

I have shown that the curvature associated with the transport of
the polarization in momentum space is the reason for the appearance of
Berry’s phase in the case of relativistic spinning particles moving in
a slowly changing environment.

However, it is not the only situation in which Berry’s phase can
manifest itself. Another field, in which one can expect Berry’s theorem
to work, is molecular physics. Very often one can use the Born-Oppen-
heimer approximation and one can treat internal coordinates of nuclei
as slowly varying parameters, to which the electronic wave functions
can adjust at any given time. Those internal coordinates of nuclei may
play a role of the adiabatically changing external parameters in Berry’s
theorem. Recently, an experiment on the two-photon resonant ionization
of Na3 clusters was reported10 which indirectly proved the existence
of Berry’s phase for molecules.
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Abstract

A novel optical heterodyne technique for Raman Ramsey spectroscopy of atomic radio-
frequency resonances is reported. The method allows for high-resolution studies in an atomic
beam as well as for the study of collisional velocity diffusion of atoms within an optical Doppler
distribution. Our experiments are performed on Zeeman sublevels in the Samarium A= 570.68 nm
(J=1)-(S'=0) transition both in an atomic beam and in a vapor; In the latter case rare gas
perturbers are added as collilsion partners. All our experimental findings are in satisfactory
agreement with theoretical predictions.

l. Introduction

Ramsey's method of separated flelds for the observation of narrow radio-frequency (rf}
resonances is well known from atomic and molecular beam experiments /1/; in general, these
Ramsey fringes are induced by use of two spatially separated rf flelds. More recently, Ramsey
resonances have been observed aiso for a resonance Raman transition in an atomic beam /2/:
Here, the two rf flelds simply were replaced by two modulated laser flelds which can create
sublevel coherence with high efficlency; the Ramsey fringes were detected via fluorescence from
the optically exclted state that couples the fight fields to the ground state sublevels.

in this contribution we report on a novel coherent optical technique for Remsey spectroscopy
of rf transitions in free atoms. The method relles on resonance Raman transitions to optically
excite and probe sublevel coherence in atomic ground states or optically excited states using two
separated atom-field interaction regions. In contrast to previous work, no second “oscillatory” fleld
is needed: Again a modulated laser field Is used for coherent Raman excitation of sublevel
coherence; the required phase sensitive detection, however, Is achleved by Raman heterodyne
detection /3,4 7 of the atomic coherence using an unmodulated probe lager fleld in the second
interaction region. This coherent detection scheme is exclusively sensitive on oscillating sublevel
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coherence; thus an essentially background-free observation of the Ramsey resonances can be
obtalned. Let us point out that the Raman Ramsey method is based on the creation and detection
of osclllating sublevel coherence; in this respect, it Is far different from other previous
observations of Ramsey fringes using lasers in connectlon with atomic coherences at optical
frequencies /5/.

The coherent Ramsey technique reported here can be used to investigate rf resonances in
atomic beams or In atomic vapors: (i} In atomic beam experiments using spatially separated flelds,
the new technique might be an interesting alternative for ultra-high resolution spectroscopy in the
rf range (see Sec. {i}. (i} When being applied to an atomic vapor, the method allows the study of
Ramsey resonances In velocity space /6,7/. In this case, counterpropagating excitation and probe
flelds are used; Ramsey interference patterns then show up due to collisional velocity diffusion of
atoms with subleve] coherence within an optical Doppler distribution thereby allowing detailed
collision studies (see Sec. ).

il. Raman Heterodyne Detection of Ramsey Resonances in an Atomic Beam

The principle of our atomic beam experiment Is illustrated in Fig.l. The atoms interact
successively with two laser flelds; in the first Interaction zone a modulated laser field oonsistlng
of the carrler with frequency wg and the sidebands with frequencies wz * w,, drives a Zeeman
split J=1 to J'=0 transition {see Fig.1a). in a resonant Raman process a coherence between the
Zeeman sublevels Is Induced; here, we conslder the creation of 1A m! =1 coherence only. After
leaving the laser beam the sublevel coherence simply osclllates at its eigenfrequency (@ (Fig.1b);
thereby a phase shift between the sublevel coherence { 2 ) and the oscliiatory laser modulation
{wy,) is built up. When, after a time T , the atoms arrive at the second interaction 2one, this
phase shift accumulates to A, t with A, = w, - £ being the detuning of the modutation
frequency w,, from the sublevel splitting frequency Q. In the second interaction region the
sublevel coherence is probed by an unmodulated laser field of frequency wg and, via a coherent
scattering process, copropagating coherent Raman fields with frequencies wg £ O are produced
{Fig.ic). On a fast photodiode the Raman fields together with the probe laser field yield a
heterodyne beat signal of frequency 2 = | wg - ( o £ 0 )1 . The amplitude and phase of this
signal directly reveal the ampiitude and phase of the sublevel coherence; thus, using a phase
sensitive detection scheme like a double balanced mixer or a rf lock-in amplifier, a phase
sensitive detection of the sublevel coherence can be achleved (see Fig.2).

The phase shift A, t resulting from the free evolution of the sublevel coherence in the
field-free zone now shows up in the output signal of the lock-in amplifier; more precisely, a
Ramsey type interference pattern proportional to cos( A,, t ) appears In the signal lineshape. This
interference structure can be observed by sweeping the sublevel detuning; it becomes Increasingly
narrow for a larger time of flight T , i.e. for a larger distance L between both interaction zones.
Due to the velocity distribution of the atoms in the atomic beam, higher order Ramsey fringes
(large Ay, ) will be smeared out but will essentially leave the central fringe (small 4, ).
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Fig.l: (a) Modulated excitation process of Zeeman coherence for a Zeeman-split (J=1)-(J'=0)
transition. (b} Free evolution of sublevel coherence during spatial motion in between the two
interaction zones.(c} Detection process showing the Induced Raman sidebands. (d) Schematic of

the experimental setup for the observation of Ramsey resonances. The photodiode PD is used for
optical heterodyne detection of the Raman sidebands.

A schematic of our experimental arrangement Is shown in Fig.2. The beam of a cw dye ring
laser was split into two parts to yleld the spatially separated pump- and probe beams; the pump
beam was phase modulated by means of an electrooptic modulation system MS in order to
generate the modulation sidebands with frequenies w. * w,,. The carrier and the sidebands were
orthogonally pofarized with respect to each other; the polarization direction of the carrier was
chosen to be parallel to the transverse static magretic fleld B that lifted the ground state
Zeeman level degeneracy. In this way (see Fig.1) the carrier drives the optical % ~transition ( Am
= 0}, whereas the sidebands solely couple the o-transitions {Am =i,

The unmodulated probe beam was polarized parallel to the static magnetic fleld B and
therefore only drives the optical 1 -transition. The simultaneous presence of oscillating | A mi = 1
Zeeman coherence in the second interaction zone gives rise to coherent Stokes and anti-Stokes
Raman sidebands of frequencles wg ¥ Q that propagate In the same direction as the probe fleld.
As a consequence of the selection rules, the Raman sidebands are linearly polarized In a direction
that Is perpendicular to the static magnetic fleld B. The orthogonally polarized probe fleld and
Raman sideband fields were then sent through a X /4-plate which introduces an optical phase
shift of x /2 between the carrier and the Raman sidebands; this optical phase shift ensures that
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Pig.2: Experimental scheme: MS, modulation system; BZ, static magnetic field; A/4, retardation
plate; A, polarization analyzer; PD, photodetector; DBM, double balanced mixer. The two principal
axes of the A /4-plate are orlented parallel to the Z and % directions, respectively.
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Fig.3: Measured Raman heterodyne signals of the detection beam as a function of sublevel
detuning 4, for a beam separation of L=7 mm. Depending on the phase setting of the rf lock-in,
the In-phase (a) and quadrature (b) component of the beat signal can be monitored.
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Fig.4: Measured in-phase Raman heterodyne signals as a function of sublevel detuning for three
values of beam separation L.

we detect those Raman signal contributions that result from atoms being optically resonant with
the probe beam /7/. The polarization analyzer A behind the A/4-plate finally projects the carrier
and Raman sidebands along a common direction in order to enable an optical interference at the
photodiode PD. The heterodyne beat signal can then be detected by & phase sensitive electronic
device; in our experiments we used a rf lock-in amplifier for this purpose.

Preliminary experiments were carried out In a Sm atomic beam; here the 4 Sm A= 570.68
nm (468 682 7'F1 - 48 SSSPTFO ) line was used for optical excitation. Typically,laser powers in
the mW-range were used with beam diameters of about 500 um. According to the Lande factor
of g , =15 for the J=1 ground state of the even Sm isotopes, the Bohr frequency of the Zeeman
splitting between the m-sublevels s given by  =2xe 21.0 MHz (B/mT). Raman heterodyne
signals of the Zeeman resonances were observed at a fixed modulation frequency w,, = 2m #
10.0 MHz by varfation of the Zeeman splitting (1 via the external field B, In Fig.3 typical Raman
heterodyne signals are shown for a separation of 7 mm between the interaction zones of pump-
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ard probe beam; depending on the phase setting of the rf lock-in amplifier with respect to the
phase of the driving modulation field @,, , the "In-phase” and “out-of- phase” components of the
heterodyne beat signal could be monitored. When the spatial separation between the two laser
beams was Iincreased, the linewidth of the Ramsey resonances decreased as dlsplayed in Fig.4.
The data also show that the signai-to-noise ratio strongly decreases for larger beam separations;
this effect is mainly due to the bad quality of our present atomic beam and due to magnetic field
Inhomogeneties along the beam axis. More systematic studies on the signal lineshapes are in
preparation using an improved atomic beam apparatus.

As In the case of the Raman Ramsey experiments performed by Ezekiel and coworkers /2/,
various frequency error sources may be present and also have to be studied In detafl with
respect to our method: these include, e.g., atomic bearn misalignment, laser beam misalignement,
optically-induced leve! shifts and magnetic field inhomogeneties. {n this context let us note that no
frequency error should occur due to optical path differences from the beam splitter to each of
the two Interaction regions shown in Fig.2 as only the excitation fleld is modulated; in principle,
even two independent lasers can be used to induce and detect the atomic sublevel coherence.

Our theoretical treatment is based on a perturbation solution for the Raman heterodyne
gignal. The medium Is modeled as an ensemble of 4~ level atoms as shown in Fig.l. We are using
the time domain for description: the atoms first experience a pump pulse and, after some time <,
another probe pulse that reads out the osclllating sublevel coherence. The solution of the
time~dependent equations of motion can then be transformed easily into the local space. Special
care is taken with respect to the integration over the atomic veloclty distribution within the beam.
First results show that the calculated signal lineshapes are In satisfactory qualitative agreement
with the measurements; details of the experiment together with the theory will be published
elsewhere /78/. In this respect let us mention that Dalton et al. recently gave a non-perturbative
theoretical analysis of Ramsey interference lineshapes In three-level lambda systems excited by
lagser flelds /9/; their description, however, is closely related to the experiments of Ezekiel and
coworkers /2/ and does not apply to our experimental situation.

In contrast to previous experiments using Raman Ramsey spectroscopy /2/, our technique
does not need a second osclllatory field to Induce Ramsey resonances: The Raman hetercdyne
method ylelds phase-sensitive information on the sublevel coherence In a direct way and the
Ramsey Interference pattern is obtained subsequently by demodulation of the beat signal in a
phase-sensitive electronic device. Moreover, the technique presented here Is essentially
background-free; it is a simple transmission method with high sensitivity through optical
heterodyning.

Obviously Raman Ramsey experiments are of interest because they have possible applications
both in spectroscopy and in the development of new time and frequency standards, especially in
the rf- and microwave range of the spectrum. This work clearly shows that very narrow optical
features can be obtained by using coherent resonance Raman processes to induce and monitor rf
resonances between two long- lived ground sublevels In a samarium atomic beam. The technique
itself should be also applicable to rubidium or cesium; in this case commercilally available
semiconductor lasers may be used for excitation and detection of the hyperfine structure
regsonances of interest.
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We also note that our technique may be applied to study sublevel resonances in optically
excited states. Here, of course, the upper state lifetime has to be taken into account; for a
reasonable time delay between excitation and detection, however, subnatural linewidth features
should be observable with acceptable signal-to-nolse ratio. Moreover, the Raman heterodyne
detection technique may be directly applied to trapped ions /10/; In this case Ramsey resonances
may be obtained by using a time-separated pulsed excitation and probe fleld. Thus the Raman
heterodyne detection of Ramsey resonances as reported here can find various useful applications
in high-~resolution sublevel spectroscopy.

Finally let us briefly discuss a somewhat different idea of Raman heterodyne detection of
Ramsey resonances In an atomic beam. Over the last few years several projects are under way
to study and demonstrate the potential performance achievable in cesium beam frequency
standards In which laser driven optical pumping Is used for the atomic state selection and state
detection in place of the conventional magnetic state selection /11/. Our proposal combines this
approach with the Raman heterodyne detection technique: its main idea is outlined in Fig. 5. In a
first step, a sublevel population difference is created by optical pumping (Fig.5a). Then a rf fleld
(t) resonantly excites the sublevel coherence (Fig.5b); this corresponds to the first atom-field
interaction region. After leaving this rf fleld region, the sublevel coherence freely evolves in time
with frequency Q as the atoms propagate along the atomic beam (Flg.5c). Now, in a second
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Fig.5: Outline of a proposal for. Raman heterodyne detection of rf- induced resonances in &
Ramsey-type atomic beam experiment. For detalls see text.
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atom-fleld interaction region, the sublevel coherence is read out by an optical probe beam yielding
coherent Raman sidebands (Fig.5d); these Raman sidebands can be monitored using optical
heterodyne detection in the same way as discussed above. The rf beat signal from the
photodetector can then be demodulated using , e.g., a bouble balanced mixer as shown in Fig.5;
obviously Ramsey interference patterns will appear In the output of the electronic device for a
sufficlently large separation L between the two interaction reglons.

Detalls of this new proposal for Ramsey spectroscopy using Raman heterodyne detection will
be published elsewhere /12/; here we only mention that this technique s closely related to
previous work on optical heterodyne detection of rf resonances in atomic vapors /13/. In
principle, the proposed detection scheme may easlly be incorporated into atomic beam setups that
already exist for the study of Ramsey resonances using rf fields In combination with optical
pumping techniques.

1)), Collision-Induced Ramsey Resonances in Velocity Space

The Ramsey resonance experiment discussed In this section utilizes the same technique for the
coherent optical excitation and phase sensitive detection of sublevel coherence as described above;
It is, however, performed in an atomic vapor, where the two laser flelds spatially overlap (see
Fig.6e). Here, the modulated pump fleld and the unmodulated probe field propagate in opposite
directions within the sample cell. Consequently, for a nonzero laser frequency detuning with
respect to the Doppler broadened optical transition ( Ap « 0), the two flelds Interact with
different atomic subgroups having opposite velocities (Fig.6d). The width of the interaction zones
in velocity space i3 determined by the homogeneous optical linewidth I' . Thus, a sublevel
coherence Is created by the modulated pump fieid In atoms with a velocity centered around -vo ,
whereas the probe field is capable to detect the sublevel coherence in atoms with velocity +v .
Hénce, the probe beam can create coherent Raman sidebands only If the active atoms change
thelr velocity from -v, to +v_ , le. if they "move” in velocity space.

One well known mechanism that provides velocity changes In a vapor is due to collisions that
preserve the internal atomic structure /14/. Here we consider velocity changing collisions of the
active atoms with added rare gas perturbers. During this collisional redistribution from the velocity
~v, to other velocities the active atoms are not affected by the laser flelds due to the Doppler
effect; as a consequence, the sublevel coherence evolves at Rs elgenfrequency 1 (see Fig.6bl. If,
after a certaln time t , the active atoms accidentally "arrive” in the opposite velocity subgroup
+v,, , the interaction with the unmodulated probe field leads to the generation of coherent Raman
sidebands ( Flg.6c); of course, the Raman sidebands can be created only if the sublevel coherence
has not been destroyed during the velocity diffusion process. Then, quite similar to the more
conventional atomic beam Ramsey resonance experiment (see Sec.ll), these Raman sidebands can
easlly be monitored using the Raman heterodyne technique (Fig.7). Most importantly, the velocity
diffusion time t© leads to a phase shift 4,, t of the photodetector signal ( @ ) with respect to
the reference signal ( w, ), thereby Introducing Ramsey type Interference patterns proportional to
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Pig.6: (a) Modulated excitation process of Zeeman coherence for a nondegenerate (J=1)-(J'=0)
transition. (b} Free evolution of sublevel coherence during velocity diffusion. (c) Detection process
showing the induced Raman sidebands. (d) Outline of the velocity selectivity of the excitation and
detection of sublevel coherence iIn a Doppler— broadened optical transition. (e) Experimental
scheme for the observation of collision-induced Ramsey resonances In Sm vepor.

cos( A, t) In the detected signal lineshepes.

in this Ramsey resonance experiment the "motion” of the active atoms in velocity space due
to VCC plays a role similar to the spatial motion of the atoms in the atomic beam experiment.
Thus Ramsey-type fringes are expected to occur, If there is a separation between both
Interaction reglons In velocity space, l.e. if the laser frequency is detuned from the center of the
Doppler profile { Ag¥0).

A more detailed schematic of our experimental arrangement Is shown In Fig.7. The pump beam
of frequency we was phase modulated by means of an electrooptic modulation system to yield the
modulation sidebands with frequencies we * w,,. The amplitudes of the orthogonally polarized
carrier and sidebands were adjusted to yleld equal dipole coupling strengths for the three Sm
transitions in order to avoid optical pumping between the m-sublevels of the ground state /7/.
This modulation and polarization scheme permits an excitation of Zeeman coherence in a single
veloclty subgroup only /6,7/. The counterpropagating probe beam was polarized paralle! to the
static magnetic field. B. The total fleld behind the sample cell, conslsting of the probe fleld and
the Ramen sidebands, passed through a M4-plate and a polarization analyzer A for Raman
heterodyne detection of the sublevel coherence. The heterodyne beat signal then was monitored by
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means of a rf lock-in amplifier as discussed In Sec.!l.

The experiments were performed in atomic samarium vapor contained In an aluminum ceramic
tube. The '54Sm X = 570.68nm (4% 682 7F, — 4® 6s6p "F, ) line was used for optical
excitation. Natural Sm consists of seven Isotopes; amoung these isotopes the 134 Sm and the 152
Sm are the most abundant ones. Corresponding to a cell temperature of about 1000 K, the width
of the Doppler broadened transition amounts to ku = 2x# 580 MHz; the homogeneous optical
finewidth (HWHM) is 2n# 230 kHz according to the lifetime (340 ns) of the excited 7F, state.

For the measurements of the sublevel resonance signals, the modulation frequency w,, was
kept fixed { @, = 2 * 10.0 MHz) and the Zeeman splitting was varied by sweeping the external
magnetic fleld B. In Fig.8 typical in-phase Raman heterodyne signals (RHS) are shown as a
function of the sublevel detuning with the laser frequency detuning as a parameter; here He
buffer gas was added at a pressure of 70 Pa. The sublevel detuning A,, is given in frequency
units according to the magnetic fleld dependence of the Zeeman spiitting frequency. it can be
seen clearly that the lineshape of the Zeeman resonances changes drastically for increasing iaser
detunings Az . In the case of Ag = O the observed RHS display a very broad resonance
structure. However, If the laser is slightly detuned from the center of the Doppler profile (e.g.
for Ag/2m = 55 MHz), the width of the resonance decreases by aimost one order of magnitude
and a pair of symmetrical sidelopes begins to develop. For larger laser frequency detunings this
characteristic lineshape patterns becomes more and more pronounced; it is accompanied by a
further decrease of the resonance linewidth and of the signal amplitude. The observed lineshapes
thus show the typical Interference pattern of Ramsey resonances. This similarity is seen most
obvlously in Fig.9, which shows a particular nice RHS in the case of a very large laser frequency
detuning; here again, He was used as a buffer gas. Within the investigated pressure range, the
basic RHS lineshape features remain qualitatively the same for the different rare gas species. The
Ramsey-type interference pattern, however, Is less pronounced for the heavier rare gases /7/.

The important role of collisions for the generation of the RHS becomes evident by considering
the pressure dependence of the RHS amplitude. A typical result for He perturbers ls shown in
Fig.10; during this measurement the laser detuning was kept fixed at Ay/27 = 300 MHz. At first,
the RHS amplitude increases with increasing buffer gas pressure; it subsequently approaches a
maximum value at a certain pressure and finally decreases again,

COur theoretical treatment relles on a steady state perturbative solution of the density matrix
equations for the coherent excitation and detection processes shown In Figs. 6a and B,
respactively; the effects of VCC on the ground state sublevel coherence are taken Into account by
means of a semiclassical transport equation. The resulting RHS can be written In the form /6,7/

Sl = f F() cos ( Ay, U dt (1)
with F(t) given by
Flt)nexp [l-vo/u) 21 exp (-yt) pl-vy2 v_ .0 . (2

The function p(-v_>v_, t) denotes the solution of the Boltzmann transport equation
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Ba—tp (Vg * Vo U = = Y00 Ly v, 8+ fdv pl-v v, 1) Wiy +v,) (3)

here, Wlv + v_} is the one-dimensional collision kernel and y,,. denotes the collision rate for
VCC. pl-v, * v , . t} describes the probability to find an atom at time t with velocity v, , If at
time t =0 its veloclty is -v_ . The Gaussian in Eq.(2) describes the usual Doppler profile that
yields Information on the number of the initially excited atoms; the exponential exp(-yt) describes
the decay of sublevel coherence during the velocity diffusion process. The loss rate Y=y _,*+Y,,
results from depolarizing collisions {y_o } and spatial diffusion { v, ) out of the laser beam.

The experimental curves can be analyzed by means of the theoretical result Eq.(1), which
essentiglly predicts that the sublevel resonance lineshape generally can be written as a Fourler
transform of a certain function F{t). This function F(t) describes the distribution of diffusion times
of atoms with Zeeman coherence moving from —v_ to +v, ; it can obviously be obtained from the
measured signals by a simple Fourier transformation according to

[-+]
Fio =11{ _ff”""’ cos( 8, t) db,, . (4

In this way a temporal resolution of the velocity diffusion process is achieved. When the Fourier
transformation (4) is applied to the measured curves, the data points (+++) shown In Fig.11 are
obtained. These Fourier transforms obviously demonstrate that the most probable as well as the
mean diffusion time get larger for an increasing laser detuning, l.e. for a larger separation
between the Interaction zones of the pump- and probe fields In velocity space. Particularly for
large laser detunings the Fourier transforms show that there are barely any signal contributions

Fig.i1: Typical distributions of diffusion times of
Zeeman coherence In a He atmosphere (p,, =
70 Pa} for different laser detunings (a: Ac/2x
= §5 MHz; b: 130 MHz; ¢: 220 MHz; d: 360
MHz). The data polnts are obtained by a
Fourier transformation of the measured RHS;
the solid lines correspond to an overall fit
T T v based on the FP-model: The values for the fit

parameters are y = 6.0 # 10 5 /s and v, =

FOURIER TRANSFORMS (arb.units)
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arising a short time after the excitation: it takes a certain time untll the first Sm atoms “arrive"
at the opposite velocity subgroup +v, . Due to this "intrinsic” time delay between the excitation
and detectlon process and due to the phase sensitive detection scheme, the resonance lineshapes
show the observed Ramsey -type Interference structure that Is connected with the linewidth
narrowing. The relative heights of the Fourier transforms (or, equivalently of the measured RHS)
indicate that the number of atoms contributing to the RHS Is strongly reduced at large detunings
Ay, : First, the number of atoms which Initially were excited Is reduced according to the Doppler
factor and, more important, the amount of detectable sublevel coherence is decreased due to
losses during the larger diffusion time.

In order to analyse our experimental data on a quantitative base, we tried to fit the Fourler
transforms of the measured RHS. The calculation of F{t) requires a solution of the Boltzmann
transport equation (3); If we assume a Brownian motion-type collision model, l.e. the “weak”
collislon case, the Boltzmann equation (3) reduces to a Fokker-Planck (FP) equation /15/. The
FP-equation contains only one time constant t,, that characterizes the approach of a given
velocity anisotropy towards thermal equlibrium. With the use of the well known solution of the
FP-equation 76,7/ we have fitted the distribution functions F(t) to the measured curves using only
two free parameters, the FP-parameter v, = 1/1,, and the loss rate y . An example of such
an overall fit Is shown in Fig.11; obviously, the FP-approach ylelds a good description of the
experimental data. From these fits the thermalization time t,, and the loss rate y can be
determined; for Sm-He collisions this time constant yields 1, = (570 * 100 us Pal/p, and the
pressure broadening Y., = c_,* p for depolarizing collisions ylelds the coefficlent ¢, =
(2n®0.48 * 0.05 kH2)/Pa. In the case of heavier rare gas perturbers like Ar or Xe, however,
the FP-model falls to describe the collisional velocity diffusion process; here, a more complex
description of VCC based on the phenomenological Kellson- Storer collision kernel ylelds a better
agreement with the measured collision data /7/.

In conclusion, we have reported on the observation of collision- Induced Ramsey resonances in
atomic Sm vapor in the presence of rare gas perturbers, The formation of these resonances Is
due to the collisional diffusion of Sm atoms In velocity space; here, In the creation of sublevel
coherence, collisions are of no importance, in contrast to recent studies by Zou and Bloembergen
on collision~ assisted Zeeman coherence /16/. Moreover, our measurements have demonstrated
that the observed linewidths of the Zeeman resonances can assume values lylng below the limit
given by the time rate of depolarizing collisions and by the transit time broadening /6.7/. Finally,
we have shown that the time constants for the collisional thermalization of the active atoms can
be derived from our data. Thus our experimental technigue may find useful applications in high
resolution sublevel spectroscopy in velocity space and In collision studies,
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DISSIPATIVE DEATH OF QUANTUM
EFFECTS IN A SPIN SYSTEM

Rainer Grobe and Fritz Haake
Fachbereich Physik, Universit#dt-GHS Essen
Postfach 103 764, D-4300 Essen

We investigate the influence of very weak dissipation on the dynamics
of a kicked spin system whose nondamped part { 1] is described by the
Hamiltonian

n=ce
K 2
H=pd_ + 2 3%x 8 (t=n) .
Po% 7% % foe

The timedependent Hamiltonian H commutes with the angular momentum vec-
tor 32 so that we can describe the system in a(2j+1) dimensional Hil-
bert space, The classical limit can be thought of as putting the angu-
lar momentum quantum number j to infinity.

Depending on the strength of the nonlinearity K we find classically re-
gular or chaotic dynamics. We have compared the evolution of the quan-
tum expectation value of a scaled angular momentum component iﬂ with

an ensemble average of many classical trajectories, We found that in
the classically regular domain the corresponding guantum expectation
value reveals a rather regular sequence of collapses and revivals with
a period proportional te j. In the chaotic regime, however, we found
erratic recurrencies.

The dissipation mechanism chosen in this model also leaves the "length”
of our angular momentum vector J invariant and is described by the su-
perradiance master equation { 2] for the reduced density operator. Clas-
gically it corresponds to a relaxation of the vector 3 to the pole

J, = -j of the sphere with radius j.

z
Surprisingly we found [ 3] in the quantum system dissipation manifests
itself already for times much smaller than the inverse damping constant.
Typical guantum phenomena like recurrencies are exponentially damped at
a rate which is proportional to j., After a time proportional to the in-
verse spin length all coherencies are dead,
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In the classically regular domain dissipation acts quite selectively:
Classically important eigenstates of the nondamped dynamics are affect-
ed only weakly whereas the modes contributing only to quantum fluctua-
tions are very sensitive to dissipation.

As a second phenomena we have investigated the influence of dissipation
on coherent tunneling, A perturbative analysis reveals that the cohe-
rent tunneling frequency is decreased by the same amount by which a
j-proporticnal damping would shift the natural frequency of the classi-
cal harmonic oscillator., These findings are in excellent agreement with
our numerical data.
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PERIOD DOUBLING IN A QUANTIZED VERSION OF HENON‘S MAP

R. Graham, S. Isermann
Fachbereich Physik, Universitat Essen GHS

We consider a renormalization approach under period doubling of a guantized version
of Hénon‘s map, which is known to exhibit chaos and to reach the chaotic state via
the period doubling route. The influence of quantum noise on the period doubling is
investigated. Writing Hénons map in the form

Xy = rixpeyp) =1 - axg - Eyp (1)
Yni1 = S8xp.¥p) = Eyy

the quantized version can be deduced from a damped, kicked oscillator [1] and the
gquantized map can be rewritten in the form of a simple c-number-map in which non-de-
terministic c-number-quantities appear, which are distributed according to some qua-
si-propability densities [2]
Xp4q = r(xn,yn) g (2)
Yne1 S(xn’yn) oy

Here ¢, and n, are stochastic c-numbers with non-classical statistical properties.
Combining these equations to a single two-step recursive map in standard form [2] the
latter reads
= 2 = B2
Zpgy + BzZp_g = 20z + 227 4+ G , B=E (3)

after appropriate redefinitions [2]. The special case §n=0 will be referred to as the
deterministic case. For the nonvanishing cumulants of the non-classical force § we
obtain

(62 = fQy = [ﬁ%ﬁ] LEE l%é coth{% g@} (4}
62> = BRy = {%2}21%

where w is the frequency of the kicked oscillator and T is the temperature of the
heat bath in which energy is dissipated. Renormalization transformations will later
generate the following cumulants

u

(qngntl> Q1 {5

$aSns1> = Ry

An approximate renormalization scheme for the deterministic map has been developed by
Helleman and McKay [3,4]. After each period doubling the map (3) can be rewritten
after an appropriate redefinition of the variable z, in its original form with well
known recursion relations for the coefficients B and ¢ [3,4). In addition to these
relations we get recursion relations for the non-classical stochastic force

Sn = @(BSn_g * € *+ San4n) (6)
with
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2
(2¢ + 4z,,)

1+8B
= 2C + 422_

a=e +

(7)

®
1

where z,,. z, denote the stable two-cycle of the deterministic map (3). The
following recursion relations for the cumulants are generated from egs. {4)-{6)
[2,5].

(8)

Q4] _ [(i+e2+B) 2e(1+B)} (@4 R§ (1+e34B) 3e(etd?) Je(libel) (Rg

of =« B e(1+8)} 9 R{pj = of B e{1+Be) 2Be Ryq
Iy B2 2Be e(e+d?)] (R,

These recursion relations determine the scaling behavior of the quantum fluctuationms.
In the conservative case (B=1) and C close to C,{1) the second order cumulants va-
nish. The largest eigenvalue of the matrix renormalizing the cubic cumulants leads to
an increase of the effective h after each period doubling according to

A’ = 69.90 K (9

A similar numerical result is obtained by Grempel et al. [6] by a different method
(h’=|c2e |H=70.83h) which is only applicable to conservative maps however. In the case
of very weak dissipation the two distinct types of quantum fluctuations, the cubic
cumulants associated with the nonlinearity of the classical map and the quadratic
cumulants with the linear mechanism of dissipation, compete with each other. Since
the scaling of f is already fixed we get a rescaling of the effective temperature by
the matrix, which renormalizes the second order cumulants. We find from its largest
eigenvalue

coth {% {g.‘i.’]z 2.247 coth [% ,’g&fr] {10)

This shows, that despite of the effective increase of # by renormalization the ratio
Aw/kT effectively decreases. For the strongly dissipative case B-0 the dimensionless
ratio <§§>2/<§§>3, which measures the relative importance of the cubic cumulant,
decreases rather quickly under renormalization by a factor 0.132.

In conclusion we can say that gquantum fluctuations in a system, which is not
strictly conservative, on the period doubling route to chaos very rapidly act like
classical fluctuations.
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RESONANCE OVERLAP AND DIFFUSION OF THE ACTION VARIABLE IN
THE LASEREXCITATION OF MOLECULAR VIBRATIONS

M. HShnerbach, R. Graham
Fachbereich Physik, Universitat Essen

Experimentally there are strong indications that chaotic dynamics is involved in the
multi-photon dissociation of molecules in strong infrared laserfields. We discuss an
appropriate anharmonic oscillator model classically and apply arguments from the
theory of quantum localization to make qualitative predictions of quantum effects.
The model we investigate is

2 2
Hip.x,t) = gﬁ +D [ 1 - exp(- a x )} - Ep % coswt (1)

The anharmonic oscillator is of the Morse type, which is a suitable model to describe
vibrational excitation of a diatomic molecule. In order to discuss classical chaotic
dynamics it is useful to transform the Hamiltonian (1) dinto action and angle
variables [1].

H(I,8,t) = 2 - I® + g coswt In [ 1 *(; i:EI c0s8 ] (2)

Here we made the following rescaling of variables.

g = ggg , 7%ﬁ5 I1-1 ., of gﬁ t-t , évrgz O+w , 8-4+8-n/2 3

As a criterion for the onset of chaotic behaviour we use Chirikov’s criterion of
resonace overlap [2]. A similar analysis was performed by Jensen [3] for a classical
electron in a 1-dimensional Coulomb potential. The criterion requires the Fourier
series expansion of the perturbation.

H(I,0,t) =21 - 1% + g ) V(I) cos (mg-wt) (4)

m=—w

The maximum distortion of orbits in action -~ angle space will occur at resonances,
where the phase , mé§ - wt , is stationary. The values for the resonant action
variables are

I =1-95 (5)

To consider the width of the resonances, we made an approximate transformation in the
vicinity of the resonant islands. The width W is when be given by

v (I 1/2
Wy =4 [_El_gi_ll_} ‘ (6)
2 I=1,
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The Fourier amplitudes Vm(I) can be found exatly

vp(n = 2 [zér}mlz - 210 (1-D) & (M
The result for the width L 15 then
1 - g_ n/4
W, = 2 V2978 1—+3‘E (8)
in

Resonance overlap occurs when the width of the islands is ¢greater then the distance
between two neighbouring islands, i.e.
Vv + ¥
S L2 S ST A (9
This inequality defines am approximate criterion for the critical coupling g,

required to destroy all KAM surfaces between the m and m+l island chains. For m » 1
we find

2 W
- W V5 1
g = o? [14005) ] (10)

The comparision of eq. (10) with the numerical calculations shows good agreement. For
g gc(m) all resonances (5) of the order larger than m can be reached from the m’th
resonance by a classical diffusion process of the action variable. The diffusion
constant D(I) of this process can be calculated in the quasi-linear approximation
[3,4] and we find

w/2(1~-1)
] (11)

2
D0 = Of iy [ oy

The mean first passage time 7 for the action I(t) to diffuse across the border of
dissociation at I=1 is then

3 1/3 _-w/6
= gl [%—ﬁ%’}mﬁ’-ﬁ—-”l] (12)
g we

in good qualitative agreement with numerical results. Quantum mechanically classical
chaos may induce Anderson—-type localization of the quasi-energy states with respect
to the action variable. Preliminary investigations indicate that this does not happen
in the present case due to the fact that D(I} diverges for I » 1, which would imply a
large localization length, while at the same time the size of the interval {1-I}
where localization could occur shrinks to zerc. However, a different type of locali-
zation due to Cantori {( = fractal remnants of KAM tori ) exists in this system, as
has recently been shown in [7].
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WINDING NUMBERS AND COLLISIONS BETWEEN ATTRACTORS IN A LASER SYSTEM

J. Tredicce, R. Gilmore, H. G. Solari and E. Eschenazi.
Department of Physics and Atmospheric Science, Drexel University,
Philadelphia, PA 18104, U.S.A. .

We consider the standard model for a CO, laser based on the rate equations

for the intensity, u, the population invertion, z, and modulated loses, in the
(normalized} form

du/dt = (z - Rcos{t)) u

) M
dz/dt=1-e4z-(1 +ep2Z)u

it has been shown experimentally1 that the CO, laser with modulated loses displays

chaotic behavior even when forced at moderate amplitude.

A detailed® study of equation (1) is able to explain most (if not all) the
observed features, in terms of the coexistence of several attractors with different
basins of atiraction for a given set of parameters.

The general description of the dynamics through the bifurcation diagram is as
follows:

For no force (R = 0) there are two fixed points; a saddle at (u,z) =(0,1/e4) and

a node at (1,0). This last one is the unperturbed mode of operation of the laser.
The saddle point is invariant under changes of the strengh R and remains at
(0,1/g4) for all R. The node initiates a period doubling cascade which back bends (at

Rjp) in an inverse saddle-node bifurcation. This bifurcation involves the period two

orbit born out of the period one in a pitchfork bifurcation together with an unstable
period two orbit born at a saddie-node bifurcation at R,. There is a coexistence of

attractors, one belonging to the unperturbed state of the laser and the other formed by
the node created at R, and its cascade.

The succession of pitchfork bifurcations reachs the acumulation point and
subsequently undergoes a period halving (inverse) cascade.
, There is simultaneously a series of saddle-node bifurcations which creates
periodic orbits of periods 3,4,...,n,... for increasing values of R, (R,). The nodes of these

orbits undergo complete cascades. We call a branch the series of events starting in a
saddle-node bifurcation, including the noisy periodic attractors of the inverse cascade.
The orbits created at R, are characterized by one peak an a charge-time of

n-1 periods approximately. In addition to this serie, there exist others branches which
create more coexisting attractors, although these orbits are not easy to detect due to
the smallness of their basins of attraction. In particular, we have found another branch
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of period 5 coexisting with members of the main branch and the branches born at Rq
and R4

Different coexisting attractors can interact through external and boundary
crisis resulting in the fusion of their respective basins 6f attraction.

For a fixed value of the parameters g4, &5 and Q in (1), those external and

boundary crisis came in a given order with respect to R but, would they came in the
same order if we change &4, e5 Or Q 7.

if the dynamics is higly sensitive to changes in the parameters we lose all
possibilities of comparision between the theory (or models) and the experiments and
even the reproductiveness of the experiments,

Fortunately enough, there are constraints impossed on the dynamics by the
way in which the oribts wrap around each other. Those constraints are well represented
{for forced damped two dimensional systems) by the winding numbers and the
collection of them, the intertwining matrix*.

The relative winding number between the orbits y ,(xya(uyzy)(t)), andf,

{xa=(un,za)(t)) of an arbitrary forced two dimensional system is defined by
pTpB Z

il = 1/ p, ) ot (1, - xgh A ) - gty x, - xgh?) @
[0, < p'Y pB ]

where A means external product, and p, pg are the respective periods of yand 8. The
T B

index i j in (2) stand for the several different pairs of initial conditions possible for a
fixed phase of the forcing term, i. e,

TS § o wfin) i
x-x(m)s-{}...py ,X—XUT)}—O..,DB.

It has been shown® that the winding numbers (W.N.} are invariant under
continuous deformations if both orbits yand B continue to exist during the process.

The W.N. can be generalized to pairs composed by a chaotic localized attractor
and a periodic orbit and even two chaotic attractors.

One of the most useful properties of the W.N. is that if two orbits (chaotic or
not) are involved in a collision, then they have the same W.N. with respect to all the
other orbits (not necesarily attractors) present at the parameter value of the collision
and which are not in the closure of the attractor.

Based on this property and the intertwining matrix for the system (in our
case eq. (1)), it is possible to understand what will be the order of the succesive
crisis.

Predictions based on this kind of analysis of eq. (1) have been recently
confirmed in experimental observations®.
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We finally stress that W.N. can be measured directly from the experimental
data, even for orbits which do not coexist simultaneously.

H. G. Solari is a fellow of the Consejo Nacional de Investigaciones Cientificas
y Técnicas of Argentina. J. R. Tredicce acknowledges a "Josep H. DeFrees" grant of
Research Corporation.
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SQUEEZED QUANTUM FLUCTUATIONS AND NOISE LIMITS IN
AMPLIFIERS AND ATTENUATORS

M Barnettl, C R Gilsonz, S Stenholm3 and M A Dupertuis3.
Ontics Section, Blackett Laboratory, Imperial College,
London SW7 2BZ, England.
2Kings College London. 3University of Helsinki.

Conventional linear amplifiers and attenuators add guantum fluctuations
to a signal (1). This additional noise is an unavoidable consequence of
guantum mechénics and is responsible for a reduction of the signal to
noise ratio during processing. Moreover, these fluctuations mean that
even strongly squeezed input light leads to an unsqueezed output if the
ampliflier gain exceeds a factor of two (2). However, devices exhibiting
sgqueezed fluctuations in the gain or loss medium may add squeezed guantum
nolse to the signal. ' This squeezing of the added noise leads to an im-
proved signal to noise ratio, in one quadrature of the output, compared
to the limits associated with conventional devices (3-6).

An ideal, quantum mechanical, linear amplifier or attenuator multi-
plies an input signal by a gain factor G% and adds Langevin-type quantum
noise to the signal, 1In the Heisenberg interaction picture the annihila~-

tion operator for the output, aOUt, is related to the input operator,

ain, by -the expression

a®ut = G%aln + R
Here R is the result of quantum f£luctuations in the gain or loss medium.
For txuly linear operation we assume the added nolse operators to com-
mute with the input-field operators. The unitarity of guantum mechanics
requires the conservation of the commutator (a,a+). Therefore, the added
noise operators are constrained to obey the commutator (R,R+) = l-G.

We define the hermitian quadrature phases by relation to the annihila-
tion operator a = a; + ia,, with a similar expression for the reservoir
noise operator R = Ry + iR,. If we assume that the initial states of
the signal mode and gain or loss medium are decorrelated, then the var-
iances in the output guadratures are

out, 2 in ,2 2
1,2 1,20 ARy,

Clearly, the fluctuations in the output are supplemented by the additive

{ra = G(Aa

contributions ARi 2+ The additional fluctuations are limited by the
14

Helsenberg uncertainty principle.
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AR AR, > 1/411 - ¢f.

2
Conventional devices have phase-insensitive noise associated with the
gain or loss medium and so produce equal added noise variances AR% = AR%.
If the noise associated with the gain or loss medium is sgqueezed, then
the noise added to one of the output guadratures, during processing, is
less than that added by any conventional device. Naturally, the conju-
gate quadrature must become very noisy for the uncertainty principle to
hold.

The principle of low noise signal processing may be demonstrated by
considering a specific amplifier or attenuator model. We have speciali-
sed our general discussion to a simple model in which the gain or loss
medium takes the form of a reservoir of inverted or conventional har-
monic oscillators respectively (3,4). In this model, the noise added
to the signal during processing is dominated by those elements of the
gain or loss medium with transition freguencies that are near to reso-
nance with the signal mode. The signal and its associated fluctuations
can be manipulated by specially preparing or 'rigging' the reservoir
state. Three classes of reservoir state are of particular interest.

If the reservoir oscillators are prepared in their vacuum states, then
the amplifier and attenuator reproduce the limiting behaviour of conven-
tional devices. Thermal reservoirs, in which the loss medium is pre-
pared at a finite temperature or the gain medium is prepared at a finite
negative temperature, degrade the output signal to noise ratio below this
conventional limit. If the reservoir is prepared in a multimode squeezed
state, then amplification or attenuation with reduced guantum noise is
possible for one guadrature of the output. Sgueezed reservoirs may also
reproduce noisy thermal behaviour.
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ORDERED STRUCTURES OF IONS STORED IN A RF-TRAP

R.Casdorff, R.Blatt and P.E.Toschek
I.Institut flr Experimentalphysik, Universit&t Hamburg
JungiusstraBe 9, 2000 Hamburg 36

Laser cooling of ions /1/ and atoms /2/ and subseguent realization of
magnetic /3/ and optical traps /4/ for neutral atoms have lead to the
consideration of crystallization of ions /5/ and possible Bose conden-
sation in light pressure traps /6/. In particular, ordered structures
have been found to occur /7/ for ions confined in a rf-trap, and va-
rious spatial configurations have been predicted. However, experimen-
tal verification is still lacking. On the other hand, many years ago,
Wuerker et al. /8/ performed an experiment with charged aluminum par-~
ticles stored in a rf-trap almost cooled t¢ rest of the viscous

drag of the atmospheric background pressure,where oraered structures
were indeed dbserved, however in patterns different from the results
of Ref. 7., Numerical calculations based on a Monte~Carlo-Simulation
enable us to predict the shape of various ordered structures of few
trapped ions under the irradiation by the cooling light of a cw dye
laser. The ions are treated as classical particles, their motion being
determined by the time dependent trap potential and the mutual Coulomb
repulsion. Laser cooling is included by random spontaneous emission as
in Ref. /9/ where the simulation procedure has been derived for free
particles. Comparison of the simulation results with the experimental-
ly observed structures /8/ and with experimental as well as theoreti-
cal distribution functions /10/ of ion clouds shows excellent agree-
ment. For these reasons we believe our simulation procedure to be cor-
rect; we are able to predict reliable ordered structures.

The calculation reveals the following features:

(1) Ordered structures are readily obtained in the process of laser

cooling. In contrast with Ref. /7/, the structural arrangement of up

to 10 ions is in the X-Y plane of a rf-trap, provided no dc-potential
is applied (trap geometry:Z, = X, / V2 ). If more than 10 ions are

loaded to the trap the structures develop additional layers parallel

20 IONS 20 IONS
AiO- \ { y 10 -
£ N €
- ~— - 7 IVN
- 0 == T 2.0 3 -
-~ e, ~r NN {7/
> A | I ~ N
~101 AR —10 1
=10 0 10 -10 0 10
X ( pm) X (pm)
Fig. 1 Fig. 2
Structure of 20 ions in X~Z cut of structure of
a re-trap X-Y cut, a = 0, Fig. 1. This reproduces
q = 0.4, 8/27,= 6.4 MHz essentially the observed

structures of Ref. 8
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to the X-Y plane, the ions generally being aligned along the field 1li~-
nes of the trapping field (cf. Fig. 2).

(2) Small imperfections in the trap geometry or slight asymmetries of
the cooling lasex with respect to the center of gravity of the ion
cloud lead to rotation of the structures.

(3} The ratioc of Coulomb-energy over kinetic energy which determines
the cooperative behaviour of such a dilute plasma /11/ is periodic in
the drive freguency and mean values &~ 100 can be achieved. At values

A 170 crystallization has been predicted./12/.

The numerical simulation of ordered structures of trapped ions in a
rf-trap under the influence 0f laser cooling is a powerful tool for
the clarification of the dynamics of few-body systems.
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QUENCHING OF QUANTUM NOISE AND DETECTION OF WEAK OPTICAL

SIGNALS IN THE QUANTUM BEAT LASER

Janos A. Bergou

Center for Advanced Studies, Department of Physics and Astronomy,
University of New Mexico, Albuguerque, NM 87131

and

Central Research Institute for Physics,
H-1525 Budapest, P.0O.Box 45, Hungary

Abstract: Starting from a Hamiltonian model of the coupled three-
~level/two-mode system, a nonlinear guantum theory of the quantum beat
laser is developed. The theory is valid under the special conditions
that lead to correlated spontaneous emission laser (CEL) operation in
the linear theory. It is shown that vanishing of the diffusion cons-
tant for the relative phase persists in the nonlinear theory and this
operation is stable above threshold. We show, on the example of the
CEL gyro/gravity wave detector, how this effect can advantageously be
applied to the detection of weak optical signals. A detailed analysis
of the noise performance suggests that the "in principle" sensitivity
of CEL detectors might exceed the standard guantum limit, A theoreti-
cal upper limit for the sensitivity increase is established,

In the optical detection of small changes of a given physical
guantity the change is converted into a phase shift (in the passive
scheme) or frequency shift (active scheme) of a laser field. This is
accomplished by sending the laser light through or generating it in a
cavity whose optical path length is sensitive to the physical effect
to be detected. The shift is measured by beating the output light with
that from a reference laser.

In this paper we deal with active detectors. In the active detec-
tion scheme the limiting noise source is the fluctuation, caused by
independent spontaneous emission events, in the relative phase between
the signal and reference lasers. It has been shown in a recent paper
that the linewidth and the associated uncertainty in the relative

phase may be eliminated by preparing the laser medium in a coherent
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superposition of two upper states [1l], as e.g. in the quantum beat

laser and Hanle laser.

In the present paper we develop a nonlinear theory of the CEL
quantum beat laser. The key feature of our approach is that, by intro-
ducing appropriately defined "dressed states”, the strong classical
interaction of upper two levels is eliminated and, in terms of these
dréssed states, we have two uncoupled upper states. Then we show that
the particular detuning conditions of Ref. 1 amount to selecting one
of the dressed states as the upper state for the laser transitions.

In fact, one can, at this point, introduce two orthogonal dressed
modes and show that, when the above conditions are met, only one of
them will lase [{2]. A similar. "dressed atom~dressed mode" picture
applies to the case of a Hanle laser, as well [3]. The CEL operation
can now be interpreted as follows. The original two bare modes can
both be expressed in terms of the single lasing "dressed mode”. In
particular, the spontaneous emission contribution into both bare modes
will be common and they cancel from the beat signal. This is the phy-

sical origin of the quenching of guantum noise.

In the next step we show that, if there is an additional frequency
shift between the two modes due to some physical effect (change of arm
length due to gravity waves or change of path lengths between two
counterpropagating waves in a ring interfercmeter like in the Sagnac
effect) then, the minimum detactable frequency might in principle be

by a factor

e = /3T (1

smaller than the standard guantum limit. Here Yo is the cavity line-
width (inverse of photon lifetime in the cavity) and  is a characte-
ristic frequency of the effect to be detected (i is the freguency of
gravity waves for gravity wave detectors and the rotation for laser
gyros) . However, when CEL operation occurs, for a large range of para-
meters also freguency locking occurs and in this case & should simply
be replaced by 1. In this case the CEL detector operates on the stan-
dard guantum limit. It still has the advantage over the usual active
systems that the signal appears directly as a phase shift and not as

a frequency shift and the system is free of the so-called “"dead band"

associated with active systems of detection.

The most interesting aspect of CEL detectors is that, by simply

increasing its geometrical dimensions, it can be unlocked. This leads
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to the following requirement
S_Q_>1 (1)
Te

where S8 1s a characteristic scaling factor of the effect to be mea-

sured. Its explicit expression for the Sagnac effect is

_ 432
s o (3}
where A is the area, p the perimeter of the ring cavity and X is

the reduced wavelength. Using this in {2} we find

2
rz N [} t2 A (4)
16 Q

as the unlocking condition. Here ¢ is the velocity of light and t
ig the transmission of mirrors. We also used the standard expression
of Ye via ¢, p and t . If we are in the unlocked regime the
sensitivity improvement is not quite as large as one might expect it
from (1) because Yo decreases with the increase of the geometrical
dimensions but it can still be gquite significant. For example, for

case of detecting a rotation rate equal to that of the earth (~10—4

with the help of an unlocked CEL Sagnac detector g ~ 10"3 . This is

Hc)

a significant effect and might render some of the predicted effects of
general relativity observable.

The author is indebted for several stimulating discussions on
different aspects of the problem to M.0. Scully, M., Orszag and L.M.
Pedrotti. This work was supported by the ONR,
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LIGHT PRESSURE INDUCED NONLINEAR DISPERSION
IN A DOPPLER-BROADENED MEDIUM

R. Grimm, Chr. Tamm* and J. Miynek
Institute of Quantum Electronics ~ Laboratory of Quantum Optics
Swiss Federal Institute of Technology (ETH) Zirich
CH-8093 Zurich, Switzeriand

In recent years resonant light pressure effects have attracted increasing attention /1/. While
laser cooling of atoms in a beam Is an example of special practical interest, resonant light
pressure also affects the atomic velocity distribution in a Doppler~broadened gaseous sample. Only
recently, however, this simple but basic situation has been analyzed In some more detall: it has
been found that the effect of radiation pressure on the atomic velocity distribution can strongly
modify the nonlinear susceptibliity of a gas giving rise to new phenomena in its optical response
/2,3/; most importantly, a nonlinear dispersion has been predicted that displays an even symmetry
with respect to the optical Doppler detuning /3/. Here, we give a brief theoretical outline of this
light pressure~induced nonlinear dispersion; in addition, we propose a simple experiment to
measure this novel effect.

We calculate the optical response of a Doppler-broadened medium under conditions of narrow
bandwidth laser excitation taking into account photon momentum transfer. The atomic medium is
modeled as an ensemble of two-level atoms with a Lorentzlan velocity distribution. Using an
appropriate density matrix formalism, a perturbative treatment yields the following result for the
total index of refraction n /4/:

-5 + gt r2(1+2r2)-3/2
32 + 1

n-1 ~

Hera e, = W2k2/2m Is the photon recolt energy, r denotes the optical Rabl frequency normalized
to the homogeneous optical linewidth T, 1 Is the effective transit time of the atoms through the
laser beam and § describes the detuning of the light field In units of the Doppler width ku. A
representative plot of this equation is shown In Fig. 1; quite obviously resonant light pressure can
drastically modify the dispersion of an atomic sample. We note that the even symmetry of the

n-1 R {arb. units)

Fig. 1: Dispersion curves showing the
total dispersion {—-) as the sum of the
nontinear light pressure-induced part ()
and the ordinary linear dispersion (---)
for gox=1 and r=1,
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nonlinear dispersion feature (Fig. 1, - ) results from the fact that the spontaneous scattering
force does not depend on the sign of the laser detuning from line center.

For the observation of this new phenomenon, we propose an experiment based on FM spec-
troscopy /5/. With the use of this simple and sensitive technique (Fig. 2) a phase shift of the
strong carrler with respect to the weak sidebands can be measured. Here, for a modulation
frequency I'<wmp<<ku, the weak sidebands can act as a phase reference for the light pressure
induced nonlinear dispersion of the carrier (Fig. 2b); this dispersion feature is reflected directly in
the In-phase modulation component of the transmitted laser intensity. The corresponding signal
shows an even symmetry with respect to the laser detuning &; moreover, its strength depends on
the Rabi frequency and, via the atomic transit time 1, also on the laser beam diameter /4/.

pow A N Fig. 2: .
LASER "/ (a) Proposed experimental scheme to
EOM VAPOR PD observe the light pressure-induced
CELL nonlinear dispersion: EOM, electro-
optic phase modulator; PD, photo

(@) : detector.
o LOBK IN (b) Schematic of the FM laser field
' (modulation frequency w,, propagation
DC oUT

in z~direction) interacting with the
Doppler-broadened sample. The strong
carrier distorts the velocity distribu-

N(v;) Z'E tion Nlv,) by its light pressure. This
shows up In the in-phase modulation

gives rise to a phase shift with
respect to the weak sidebands that

Wn
leil component of the transmitted light
— Sku e kv, intensity.

Experiments to verify these predictions are currently In preparation. As an atomic sample the
Ytterbium A=555.7nm 'S5-3P, fine might be an Interesting candidate: Here g.t1=1 can be fulfilled
using a beam diameter of about icm and r=1 can be obtained easlly with laser intensities of less
than 1 mW/cm?Z,

References

71/ See, e.g., JI. Opt. Soc. Am. B2, 1705-1860 (1985) and references therein.
/2/ R. Grimm, Diploma thesis (Hannover University, 1386), unpublished.

/3/ AP. Kazantsev, G.I. Surdutovich, V.P. Yakoviev, JETP Lett. 43, 281 (1986).
/4/ R. Grimm and J. Mlynek, to be published.

/5/ G.C. Bjorklund, Opt. Lett. 5, 15 (1980).

* Present address: Beijing Institute of Opto-Electronic Technology, Beljing, China.



285

UNSTABLE PERIODIC ATOMIC ORBITALS

Hubert Klar
Fakultit fir Physik, Universitdt Freiburg

Hermann Herder Str. 3, D-7800 Freiburg

Simple examples of nonintegrable mechanical systems like stadium problems have estab-
lished the fundamental role of unstable periodic classical trajectories for the
structure of the corresponding quantum spectrum {!). These investigations show clear-
ly in a one-~to=-one correspondence that guantum wave functions are mainly distributed
along classical periodic orbits. There is however in general no simple relation bet-
ween classical solutions and energy positions of individual guantum states except
that the statistical distribution of energy levels avoids accumulations because the
set of periodic orbits is usually of measure zero with respect to nomperiodic, in

general chaotic orbits.

The structure of atomic resonance spectra near thresholds of multiple ionisation
is still largely unexplored. The problem is a difficult one, experimentally due to
the lack of lasers in the spectral range of interest, and theoretically due to the
high degree of non-integrability of the N-body (Nzﬁ) Coulomb problem. The importance
of the problem is augmented by the fact that we expect universal properties for all
atoms depending only on the number of highly excited electrons (two in the following
for simplicity) because the core is a passive spectator in such a situation. For the
rveason mentioned above recent theoretical research has focussed to find periodic
classical trajectories for two-electron atoms (3-body problem). All these orbits
must be unstable because the potential surface has no minimum. Below we report our

results.

One class of periodic sclutions describes rotating rigid bodies {(2). It can be
shown that exactly two configurations exist, a linear rotor and a top. In both ca-
ses the electrons perform strongly correlated circular orbits with radii equal to
each other, see Fig. 1 and 2, such that the centrifugal forece cancels all Coulomb
forces. The spectrum of local Liapunov exponents identifies these trajectories as

hyperbolic fixed points (3).

A second class of periodic solutions describes a "breathing atom". Here each elec-
tron performs an ellipse, both ellipses are equal in size and opposite to each other,
see Fig. 3. The non-precessing ellipses may be regarded as Kepler ellipses with nuc-
lear charge 2-.25. The straight line limit of the ellipses is known as Wannier so™
lution {(4), the obvious generalisation to ellipses seems never have been published
(5), Also these solutions are unstable because the motion of the electron pair pro-

ceeds along a potential ridge.
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A quantisation for unstable periodic orbits is unknown. The identification of.such
orbits in quantum spectra is simplified in two limiting cases. In the case of a weak
instability (small positiv Liapunov exponent) one may regard the orbit as approxima-
tely stable, and quantise the degree of freedom according to Bohr-Sommerfeld. This

would lead to atomic rotation spectra for the rotor and the top,

el
]

I - b/L(L+1)
and to a series of ridge riding resonances

I - .5(2-0.25)2/(N+2.5)%

%)
1]

Here I is the threshold for double ionisation, L and N are integers >>1 and b is a
rotation constant known for rotor and top. In the opposite limit of a large Liapunov
exponent the interaction of the periodic orbit with a chaotic background leads to
interference pattern. The Fourier transform of excitation cross sections should then

spike at the classical recurrence times.

-
4l !R~ -

L

),

Fig. 1 Fig. 2 Fig. 3
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Virtual cloud effects in spontaneous decay

G. Compagno, A. Santangelo
Istituto di Fisica dell' Universitl, via Archirafi 36

90123 Palermo, Italy

An atom interacting with the e.m. field when is in its ground state is dressed
by a cloud of virtual photons. This cloud is connected to the level's radiative
shift.l Moreover the atom's bare ground state is not asymptotically stationary being
its time evolution influenced by the interaction. It was long ago suggested that some
processes, like radiative decays, should be considered to veccour between dressed sta-
tes instead than between bare ones. The one-photon decay and resonance scattering
from one atom have been studied taking into account the atem dressed ground state.2
Only the excited levels decay time has been caleulated, Moreover in the one-photon
atom's decay the transition amplitudes between dressed states differ from the corre-
sponding ones between bare states only for high order corrections.

It can be shown that starting from a bare state, the time it becomes effectively
dressed by a virtual cloud is usually short and at most of the order of -the inverse
of the transition frequency between the given state an the immediate higher one. This
leads one to expect that also for excited states, whenever the dressing time is short
compared to the decay time, the dressing should be taken into account. In the two-—
photon decay from a metastable atomic state the Feynman diagrams describing,at lowest
order, dressing are of the same order of the lowest order diagrams for two-photon de-
cay. This impliegthat, for this process, the differences arising by considering dressed
instead than bare statés,should be more significant than the corresponding ones in
the one-photon decay.

Here we consider a model three-level atom, with bare eigenstates |i» ,(i=1,2,3)

and interacting with the e. m., field, described by the Hamiltonian H=H,+V, with

H, = Zl_wiuxil + ZJ-?% 3 oy (j=1,2)
ioTi
- _ } .
vV = = e
and % Vi %§j[€kj(ak’j+ akj)U)(Jl + Hee.] )

With this Hamiltonian the intermediate level 2 executes a two-photon decay to level

1 via level 3. It is dressed at the same order by virtual photons emitted in the vir-
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tual transition 2«*3. At the same order level 1 is dressed by virtual photons due to
transition le»3. To take into account the dressing of both initial and final state,we
subject the Hamiltonian (1)} to a unitary transformatioan T=exp(1iS) with §§S . So it is
obtained the transformed Hamiltonian §=THT_1. By developing S in powers of the cou-
pling constant € as S=2:Sn, where Sn 0{n) we obtain
f-rur’ =8 I¥ (2)
where ﬁn is the 0(n) effective interaction. The Sn can be choosen so that in ﬁn there
are nmo terms that,at order n, give rise to unobservables virtual tramsitions. H, con-
tains only diagonal terms at all orders. Up to second order we obtain:
o m T &cir s TR a‘;ak. + iy (3
"1 71 173
3 3

while ‘033 Iy th and H, conéalns the effects”of dressing on photon states and does

not give a contribution in our case. The effective interaction terms are:

% %_.(Gls_.ak-“)(:“ + H.c.)
1l 1]
(e e +e€¥e )
-1%—2 ky Rk 152

Vé contains terms which are effectlve only if photons are present both in the initial

and final states. The relevant interaction terms have a r.w. form also in the second

where €3,.=¢d., and wJ ooj—% ‘215 /( A} J+w ) are the dressed atomic frequencies

11524 + H.oe.) + Vé (%)

order Vz which now couples directly levels 2 and 1. Now it is possible to use the tra-
nsformed Hamiltonian in the resolvent 5(z)=1/(z—§) in order to get the transition am-—

plitudes between dressed states,which are now eigenstates of (3). The persistence am-—

plitude inthe dressed state 2 is EZ )~ exp(-i a5t~7;t/2) with a decay time
’ 2 2 -1 5o
=1 =27 € + Y
/T, % %{l kll tekzt (o, 152) @,~ q} » (8

It differs from the bare decay time by the replacement of dressed atomic and photon
energles in place of the bare ones. The dressed lineshape is given by the square of am—

. ” g s N2 p2,m-l
plitude: I‘-‘l‘—‘zzaelfzt (w32+mk) J{ek( (3,5, q{z) « T )

In (7) the first factor in the R.H.S. can be assoc1ated to the virtual photon distri-
bution in the wvirtual cloud arond the excited level 2. Eq. (7) differs from the bare
amplitude for the change of the denominator of the first R.H.S. factor by Ezoal h& )
Fz/&] 1 .80 there.is a relevant difference between dressed and bare lineshapes.
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