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FOREWORD 

The Seminar on Fundamenta ls  of  Quantum O p t i c s  I I  was the t h i r d  mee t ing  

on Lase r  Phenomena h e l d  a t  the  Bundesspor the im in  Obergu rg l .  I t  was 

a t t e n d e d  by 41 p h y s i c i s t s  from A u s t r i a ,  The Federa l  Repub l i c  o£ Germany, 

France ,  Grea t  B r i t a i n ,  Hungary,  I t a l y ,  Poland,  S w i t z e r l a n d  and The 

Uni ted  S t a t e s ,  who work a c t i v e l y  in  the  r a p i d l y  d e v e l o p i n g  f i e l d  o f  

quantum o p t i c s .  

The f i r s t  mee t ing  in  t h i s  s e r i e s  (Obergurg l ,  F e b r u a r y  26 - March 3, 

1984) a l s o  a d d r e s s e d  the  s u b j e c t  of  quantum o p t i c s  and was p u b l i s h e d  as  

Fundamentals  of  Quantum O p t i c s .  Ac ta  P h y s i c a  A u s t r i a c a ,  Vol.  56, 

No. 1 - 2,  1984. 

The p r e s e n t  Seminar o f f e r e d  the o p p o r t u n i t y  to d i s c u s s  a t  leisure 

problems of  mutual  i n t e r e s t  to  t h e o r e t i c i a n s  and e x p e r i m e n t a l i s t s  who 

a r e  working on v a r i o u s  a s p e c t s  of  the  f i e l d  of  quantum o p t i c s .  The 

i n t e n t i o n  was to b r i n g  t o g e t h e r  peop le  who a r e  do ing  r e s e a r c h  on quantum 

chaos ,  squeezed s t a t e s ,  quantum jumps, quantum e l e c t r o d y n a m i c s  in  a 

c a v i t y ,  c o o l i n g  and t r a p p i n g  of  p a r t i c l e s ,  and on o t h e r  fundamenta l s .  

At the  seminar  18 I n v i t e d  L e c t u r e s  were g i v e n  by:  

N.B. Abraham (Bryn Mawr) 

Z. Bialynicka-Birula (Warsaw) 

J .  D a l i b a r d  ( P a r i s )  

W. Er tmer  (Bonn) 

E. Giacob ino  ( P a r i s )  

R. Graham (Essen)  

F. H~Ake (Essen) 

S. Haroche (Paris and New Haven) 

J. Javanainen (Rochester) 

H.J .  Kimble ( A u s t i n )  

P.L.  Knight  (London) 

G. Leuchs (MPI Carch ing )  

P. Meyst re  (Tucson)  

J .  Mlynek (ZUrich)  

J.M. Ralmond ( P a r i s )  

H. Risken  (Ulm) 

A. Schenz l e  (Essen)  

P.E.  Toschek (Hamburg) 

In  a d d i t i o n ,  t h e r e  were 10 c o n t r i b u t e d  t a l k s  g i v e n  a t  the meet ing .  



IV 

The f o l l o w i n g  pages  p r e s e n t  the  f u l l  t e x t  of  the i n v i t e d  l e c t u r e s  and 

the a b s t r a c t s  of  the  c o n t r i b u t e d  p a p e r s .  The e d i t o r  i s  g r a t e f u l  to the 

c o n t r i b u t o r s  f o r  t h e i r  c o l l a b o r a t i o n  i n  p r e p a r i n g  t h e i r  t y p e s c r i p t s  f o r  

r a p i d  p u b l i c a t i o n .  

The a c t i v e  y e t  r e l a x e d  a tmosphere  of  the  Bundesspor the im a t  Obe rgu rg l .  

su r rounded  by the snow-capped peaks  o f  the O t z t a l  Alps .  p r o v i d e d  a 

c o n g e n i a l  s e t t i n g  f o r  a v e r y  s t i m u l a t i n g  and reward ing  mee t ing .  I t  i s  a 

p l e a s u r e  to  thank a l l  p a r t i c i p a n t s  f o r  t h e i r  i n t e r e s t  and en thus ia sm.  

The most v a l u a b l e  s e c r e t a r i a l  a s s i s t a n c e  o f  Hiss  E. Nerl  i s  g r a t e f u l l y  

acknowledged.  

Irmsbruck. April 1987 F. Ehlotzky 
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QUANTUM CHAOS FOR KICKED SPINS 

t* 
F. Haake, M. Kus, and R. Scharf 

Fachbereich Physik, Universit~t-GHS Essen 

Postfach 103 764, D-4300 Essen 

The quasienergy statistics for kicked quantum systems displaying chaos in the classi- 

cal limit fall into three universality classes. These correspond to the socalled 
orthogonal, unitary, and symplectic ensembles of random matrices. Realizations of all 

three kinds of dynamics with kicked spins will be presented. The universality of 

level repulsion will be demonstrated by dynamical and statistical arguments. The 
transition from regular (level clustering) to irregular behavior {level repulsion) 

will be discussed briefly. 

Classically chaotic motion of spin systems has been observed by subjecting small 

crystalline magnets with an easy plane of magnetization to a magnetic field varying 

periodically in time [1]. The relevant dynamical variables are the components of a 

global spin vector J which moves with its length conserved, 

j2 = j(j+l) . (I) 

The experiments in question involve quantum numbers j sufficiently large for quantum 

effects to be entirely negligeable. 

Theoretical investigations have shown that for quantum numbers j of the order of 

several hundred very interesting quantum mechanical aspects of chaotic motion arise 

[2]. Present-day technology should allow the observation of these effects with small 

clusters of atoms. 

In this talk the quasienergy statistics of kicked quantum spins obeying (1) will be 

*Permanent address: Institute for Theoretical Physics, University of Warsaw, 

Hoza 69, 00-681 Warsaw, Poland 



discussed. We think of a periodic sequence of delta-shaped kicks such that the unita- 

ry time evolution operator transporting the wave vector from kick to kick reads 

=e-i k -ipJy 

The factor in U obviously describes a precession of J around the y axis by an angle 

p; this precession can be realized by exposing the system to a magnetic field point- 

ing in the y direction. The second factor in U might be due to a magnetic anisotropy 

and may be interpreted as a nonlinear torsion around the z axis by an angle propor- 

tional to kJz/j. We shall refer to the coupling constant k as to the kick strength. 

Powers of U, U n with n = I, 2, 3 ..... yield a stroboscopic description of the evolu- 

tion of the quantum wave vector of the spin. 

1\ 

4 {''~\ 

6 6~ 

z 

Fig. la-d. Classical motion on the unit sphere. Shown are some trajectories on the 

northern hemisphere (Y > O). Fixed points are labeled by i, points on n-cycles by n i- 

a: p = n/2, k = 2; b: p = ~/2, k = 2.5; 

c: p = n/2, k = 3; d: p = n/2, k = 6. 



Classical behavior emerges in the limit j * ~; the classical vector X = lim J/j moves 
j~ 

on the unit sphere [2]. As a background to our discussion of finite j we present in 

Fig. 1 portraits of stroboscopic trajectories of the classical top for p = ~/2 and 

various values of the kick strength k. The interesting message to be drawn is the 

predominance of regular motion for small k (k ! 2.5) and of chaos for k ~ 3. 

The classical transition from mostly regular to mostly chaotic behavior is paralleled 

by a dramatic change in the quantum mechanical eigenvalue spectrum of the operator U. 

L a b c 

O. 0 1 2 3 

S 

Fig. 2. Level spacing statistics, a: under 

conditions of classically regular motion . 

b - d: under conditions of classical chaos. 

b: j = 500, with generalized time reversal 

invariance T gives linear repulsion. 

c: j = 500, no T, quadratic repulsion. 

d: j = 499.5, with T, no parity, quartic 

repulsion (symplectic case) [4]. 

p(s) 

0.5 

(1 
0 1 2 3 

S 



Since U is unitary the eigenvalues are unimodular and can be characterized by eigen- 

phases ?n' 

Uln> = e i ? n l n >  , (3) 

which all lie in the interval O S ?n ( 2~o Upon diagonalizing U for, say, j = 500 one 

finds that the ?n tend to cluster for small k but display repulsion for large k. 

Numerically obtained level spacing histograms for the operator (2) are given in Figs. 

2a (clustering limit) and 2b (repulsion limit). The smooth curve in Fig. 2b is an 

average level spacing distribution for Dyson's orthogonal ensemble of unitary (2j+l) 

by (2j+l) matrices generated from any one such matrix by arbitrary orthogonal 

transformations [3]. 

The level spacings of our U for large k are thus typical of any randomly chosen 

symmetric unitary matrix of like dimension. Symmetric unitary rather than general 

unitary matrices are of relevance here because of the following time reversal 

invariance of our U, 

TUT-I=U-I 

iPJyei~J z 
T =e K 

(4) 

where K is the complex conjugation operation [2]. In fact, the invariance (4) places 

a restriction on the matrix elements of U so as to leave Only one real parameter free 

in each off-diagonal element. 

By breaking the time reversal (4) we obtain matrices U which have two real parameters 

free in each off-diagonal element and are thus genuinely unitary. Examples of such 

evolutions have been discussed in [2]. Fig. 2c shows a level spacing histogram per- 

taining to the level-repulsion limit of 

-i(k'/2j)J~ -i(knj)a~ - 
U = e e e IpJy (5) 

for which no time reversal holds. The smooth curve corresponds to Dyson's unitary 

ensemble of unitary (2j+l) by (2j+l) matrices [3]. The important difference between 

the "orthogonal" and the "unitary" case lies in the degree of level repulsion. In 

both cases the level spacing distribution P(S) rises like a power out of the origin, 



P(S) ~ s ~ . (6) 

The exponent ~ is unity for the evolution (2) and two for the evolution (5). 

We have recently succeeded [4] in constructing an evolution operator for kicked spins 

the level spacing statistics of which pertains to the universality class of Dyson's 

symplectic ensemble [3]. Group theoretical arguments show that realization of that 

case requires half integer j, the presence of an antiunitary time reversal invariance 

and the absence of any other discrete rotation invariance [2c]. As shown in Fig. 2d 

the level repulsion in that case is quartic, ~ = 4. It is interesting to realize that 

this repulsion enhancement is related to Kramer's degeneracy. Each level ~n is doubly 

degenerate, i.e. has two independent eigenvectors In> and In> associated with it. 

Each level pair ?n' ?m (with ?n # ?m ) thus gives rise to eight offdiagonal matrix 

elements of U. The potentially sixteen real parameters in these elements are reduced 

in number to four by unitarity and time reversal. 

The explanation of the success of random matrix theory with respect to the level 

spacing distribution is a long standing problem. A bit of progress was achieved when 

the mathematical equivalence of the quantum mechanical eigenvalue problem (3) to the 

classical Hamiltonian dynamics of a system of N interacting particles [5] in one 

spatial dimension was recognized [6]. Instead of formulating the equivalence in 

question for an evolution operator of the form (2), i.e. 

U = e ikV Uo (7) 

with an exactly solvable part Uo and a perturbation V (not commuting with U o) we 

propose to study 

U = e i k v / 2  Uo e i k v / 2  (8) 

Both operators U in (7) and (8) have identical eigenphases ?n (as well as matrix 

elements <nlvlm> = Vnm) and are thus equivalent for our purpose. The symmetrized 

version (8), however, is slightly more convenient to work with. Moreover, we first 

restrict ourselves to integer j and time reversal invariant dynamics. The eigenphases 

?n as well as the eigenvectors ~n> of U depend on the weight k of the perturbation. 

That k dependence can be described by a set of differential equations obtained by 

differentiating the eigenvalue equation (3) with respect to k. These differential 

equations take the form of classical Hamiltonian equations if we associate 



Pn = 

<n{Vin> = 

<l t Jr¢ >n-'m nl <nlVlm> = 

use angular momentum 

Hamiltonian 

= time 

position on a unit circle 

momentum Pn 

angular momentum 6nm , 

Poisson brackets for the 6ij [7,8] and the N particle 

N 

= 1 V z . H = I ~ p~ + ~ ~ 6~m ~r tr 

n:l n~m sin'[(,n-?m)/2] 

Note that the interaction potential in (9) is repulsive. 

(9) 

T'ij = Pi 6ij+ ~ (i- Gij) 6ij cot [(?i-?j)/21 

Fij = ~ (I - 6ij) 6ij 

Mij = i ( 1  - 6ij) 6ij/sin2 [(?i-,j)/2] . 

Due to the commutator structure of the equations of motion (I0) and the cyclic inva- 

riance of the trace of matrix products we immediately find the traces of arbitrary 

products of L and F, 

C = tr (L ~ F ~ L a F T ...) , (12) 

to b e  constants of the motion [9]. Eqs. (10,11,12) remain valid e v e n  for halfinteger 

(il) 

where [ , ] denote commutators. The matrix M occuring here plays the formal role of a 

generator of infinitesimal "time" translations. All three matrices L, F, and M are 

composed of the coordinates ?, the momenta p, and the angular momenta 6, 

d L  dF 
E[ = [M,L] , a][ = [M,F] , (10) 

For our purpose it is most convenient to write Hamilton's equations for the ficti- 

tious N particle system as differential equations for two N by N matrices L and F, 



j and for dynamics without time reversal invariance. 

We are now equipped for a statistical mechanical discussion. Let us first take our 

fictitious N particle system to be in equilibrium. Presumably, such a "time"-indepen- 

dent equilibrium behavior is reached for large k. Any normalizahle function of the 

constants of the motion (12) is a potential candidate for an equilibrium phase space 

probability density of the ?, p, and 6. Were we concerned with real particles it 

would be natural to admit only the energy (9).Since H does not appear to have any 

clearcut physical meaning for the original quantum mechanical eigenvalue problem we 

see no reason to prefer it to other constants of the motion. We therefore propose to 

explore a generalized canonical ensemble in which all independent constants are 

admitted, 

p (?,p,6) = Z -I exp [-IonCn] 
n 

(13) 

with hagrange multipliers o n determined by the ensemble means of the C n. 

The distributions (13) contain more information than we are interested in. Upon inte- 

grating out the momenta p and angular momenta ~ we obtain probability densities for 

the coordinates, i.e. for the eigenphases of the evolution operator (7), 

P(?) = f [nNl d Phi [n~m d~ 6nm] p(?,p,6) . (14) 

The index ~ in the angular momentum differentials indicates whether each particle 

pair (i.e. pair of eigenphases of U) is represented by one, two, or four independent 

real parameters in the angular momentum 6nm (i.e. the offdiagonal elements Vnm of the 

Perturbation V in U). The index ~ is determined by the symmetries of U as discussed 

above. 

The positions ?i enter the probability density P(?) only through the matrix L in 

(12). There would thus be no ? dependence of P(?) at all if only constants of the 

motion of the form tr F ~ were admitted in (13), a case we exclude from the following 

Incidentally, the energy H = ½ tr (L2-F2), perhaps the most Consideration. natural 

constant of the motion to be included in (13) provides P(F) with a nontrivial F 

dependence. We should now appreciate that the constants C involving factors L and 

thus the canonical distribution (13) depend singularly on the spacings ?i-?j. 

Obviously, this means level repulsion in the spectrum of the evolution operator (7) 

for large enough k. To bring about the level repulsion implied by the reduced 
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distribution P(?) it is convenient to change integration variables in (14) as 

6ij = ~ij sin[(~i-?j)/2] * (15) 

The corresponding change in the integration measure is 

(16) 

and we thus arrive at 

(17) 

where 

(18) 

no longer vanishes for ~? = O. The behavior of P(?) for A? ~ O, i.e. the degree of 

level repulsion in the quantum spectrum of U for large k is thus seen to be dominated 

by the first factor in (17) and to be independent of the choice of the constants C 

admitted in the ensemble (13). The remaining factor in (17), p(?), takes care of the 

behavior of P(?) at large spacings and does depend on the choice of the constants C. 

Further investigations are necessary to clarify the role of p(?) for the level spac- 

ing distribution and other spectral characteristics. 

From the statistical mechanical point of view adopted here the transition from "regu- 

lar" level clustering to "irregular" level repulsion with increasing weight k of the 

perturbation V in (7) appears as a relaxation into equilibrium. To shed some light on 

the equilibration process we consider two constants of the motion for the fictitions 

N particle system. Of the two constants of the motion we have in view one is 

J6nmlZ 1 
c0: sin2[,,n ,m),2l : tr (" F', (19) 

(which for integer j and time reversal invariant dynamics is the Hamiltonian (9)) and 

the other 

Cz = ) 16nm j2 = tr F z . (20) 

n~ 
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Conservation of C l implies that the dynamics of the N particle system takes place on 

a hypersphere in the subspace spanned by the angular momenta 6. At k = O, then, it is 

typical for the perturbation V to have nonvanishing matrix elements Vnm in the 

eigenrepresentation of U(O) = U0 only close to the diagonal [I0]. Consequently, the 

numher of initially nonvanishing angular momenta ~nm is not N{N-I) but rather only 

Proportional to N. As k increases, however, the matrix V tends to fill up with 

nonzero elements and more and more angular momenta &nm take on appreciable values. 

This is obvious from the equation of motion for 6nm following from the equations 

( 1 0 ) ,  

i(~,m) 

(21) 

T h e r e f o r e  we e x p e c t  ~ I~nm I to  i n c r e a s e  wi th  k. From ene rgy  c o n s e r v a t i o n  f o r  t he  
n~m 

f i c t i t i o u s  p a r t i c l e s  we i n f e r  t h a t  c l o s e  approach  of two p a r t i c l e s  i s  p o s s i b l e  f o r  

all pairs with vanishing 6rim. Indeed, (19) implies a lower hound for the distance of 

any pair of particles, 

len - eml ~ ½ I~nml/,/-~o - (22) 

Fig. 3. Typical lower hound 
S = 4?/~P for level spacings 

(defined in the text) versus 

kick strength, for j = 50 

and j = 500. 

0.1 
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At k = O only a tiny fraction (~ l/N) of the particle pairs has close approach ener- 

getically forbidden. But as more and more angular momenta become finite in magnitude 

with increasing k the fraction of particle pairs with forbidden close encounters 

grows. Equilibrium will be reached when nonzero angular momenta 8nm force all partic- 

les to stay apart from oneanother at distances of the order of the mean level 

spacing. 

As a rough estimate for typical smallest level spacings we might take the average 

1 

n~m 

which has the mean level spacing 

~-? = 2n/N (24) 

as upper bound. Our above arguments indicate that A? should increase with k. Fig. 3 

confirms that prediction for the kicked top described by the evolution operator (2). 

As one would expect in the vicinity of the integrable case (k = O) the normalized 

quantity S = ~?/~-~ goes to zero for increasing N = j. It is interesting to see S to 

display a rather pronounced growth in the range 2.5 ! k ~ 3.5 which is precisely the 

range in which the classical top makes the transition from dominantly regular to 

dominantly chaotic behavior (see Fig. i). The saturation of S for k ! 3.5 corresponds 

to the practically complete coverage of the phase space of the classical top with 

chaotic trajectories. Although the saturation value seems to he independent of j, 

differences between the two parities are visible. 

We gratefully acknowledge support by the Alexander-von-Humboldt-Stiftung and the 

Gesellschaft yon Freunden und F~rderern der Universit~t-Gesamthochschule Essen. Spe- 

cial thanks for discussion and help are due to G. Eilenherger, 
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Abstract 

The time evolu t ion of  the density matr ix  generated by a quantum version of  the 

'standard map' (kicked ro ta to r )  wi th d i ss ipa t i on  is  studied.  The quantum ensemble 

corresponding to the classical invariant measure on the strange attractor is ob- 

tained and discussed. The influence of weak dissipation on localization phenomena 

in the quantized standard map is assessed qualitatively and studied quantitatively 

in numerical experiments. Complete delocalization is found for sufficiently strong 

dissipation. For extremely weak dissipation a remnant of quantum localization is 

found to survive even in the steady state. 

l. IntrodueLion 

In recent years there has been a strong interest in the behavior of quantum sys- 

tems under the influence of intense externally applied periodic fields (cf. reviews 

given in [1], [2],[3]). Examples which have been investigated both theoretically and 

experimentally include molecules vibrationally excited by strong infrared laser 

fields and Rydberg atoms in strong microwave fields. From these studies it has be- 

come clear (i) that the classical dynamics of these systems is chaotic, and (ii) 

that this property alone already accounts for the main experimental resu]ts, such as 

the ~fluence dependence' of the average number of absorbed quanta in infrared ex- 

citation of molecules [3], and the observed strong multi-photon ionization of 

Rydberg atoms in non-resonant microv~ave fields below the ionization threshold in 

corresponding static fields [4]. 

However, given the fact that one is really dealing with quantum systems in these 

experiments the question has natural]y been asked what the quantum corrections to 

the chaotic classical behavior should be. This question has been deait with in a 

vast literature, an important part of which has concerned itself with two main sub- 

jects: (i) the investigation of a simple model system, the 'periodica]]y kicked pla- 

nar rotator, which ia claaalcally equivalent to Chirikov,s 'standard map' [5] and 
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(ii) the analysis of a physically more realistic model of a l-dimensional hydro- 

gen atom in an external microwave field ~]. From this work one has learned that im- 

portant quantum effects in periodically driven classically chaotic systems can, in 

fact, exist, arising from subtle coherence effects in the quantum wave function des- 

cribing a system which is classically chaotic. 

So far, these effects are best understood in the example of the kicked rotator to 

which we shall confine our discussion in the following. A rather close physical real- 

ization of this model by the microwave excitation of rotational bands in a diatomic 

molecule has recently been proposed [7]. Let us briefiy recall some of the important 

results for the kicked rotator. Its Hamiltonian takes the form 

where we have chosen un i t s  in  which the moment of  i n e r t i a  of  the r o t a t o r  and the 

per iod of  the kic l :s i s  u n i t a r y .  The parameter K i s  a measure o f  the s t reng th  of  the 

k icks.  I n t e g r a t i n g  the canonica l  equat ions o f  motion f o l l o w i n g  from (1.1)  between 

two times n , n+ l  immediately preceding two subsequent k icks  we ob ta in  the 

's tandard map' 

P.+l = P.  - ~ sis 2~q~  , 
(1.2) 

where fl.:=q(~), p . : = p ( ~ - ¢ ) ,  and r-~ O + . Eqs. (1 .2)  may be read as c l a s s i c a l  or 

as quantum mechanical Heisenberg equat ions o f  motion wi th  the Poisson bracket  or com- 

mutator 

The quantum map in the Schr6dinger picture takes the form 

(1.3)  

.P~ i ~ ~s2~q 
1~,1 > =Ul~>=e-'~ e ~ ¢~' {~}. (1.4) 

The classical map for K>O behaves like a typical non-integrable Hamiltonian system 

which is neither integrable nor fully chaotic [8]. For 04K <~ the classical map has 

stable 1-cycles (0, m) where m are the integers. For O<K~2 there are also stable 

2-cycles (0, m + i/2), (i/2, m + i/2) whose angular momentum is in between that of 

the I-cycles. For K< K¢= 0.9716 the 1-cycles and the 2-cycles are separated by a 

continuous KAM curve p=p(R) (°~q~1) . In this domain chaos exists only locally 
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in phase space. For K>K c the last KAM torus has broken down and there is chaos on a 

large scale in phase space. Typically, the mean square angular momentum grows diffu- 

sively, i.e. linear in n, in this regime (pz>= D(K) n . Nevertheless for arbitrari- 

ly large values of K there also exist windows of stability for cycles of period 2 or 

higher and for 'accelerator modes' ( ~-~Arctan , ~n+ [m ) for integer L whose angu- 

lar momentum increases linearly with the number of kicks. 

Quantum mechanically, there is strong numerical and theoretical evidence [5] that 

the diffusive motion of <pz~ is destroyed by coherence effects of the wavefunction. 

lhe Floquet states of (1.4) satisfying 

C -~2~ e ~ Iu&> Iux> (1.5) 

for typical values of K>K¢ , seem to be exponentially localized in the angular mo- 

mentum representation due to a mechanism similar to Anderson localization in dis- 

ordered systems in real space [9]. As a result any initial wavefunction Iyo> lo- 

calized in p has appreciable overlap only with a finite number of Floquet states 

spanning a finite dimensional subspace and remains in that subspace under the action 

of (l.q). I~> therefore remains localized in the angular momentum representation in 

the course of time precluding diffusion of angular momentum. There are exceptions 

to this typical case, however. In the case of 'quantum resonances' where in the 

chosen units 

2,.7"C'h e.. ~ ,  ( 1 . 6 )  

the spectrum of Floquet exponents~ in (1.5) is continuous, the Floquet states (i.5) 

are extended, and the mean square angular momentum for large times increases quadra- 

tically in n [i0]. Again, this is a quantum mechanical coherence phenomenon, which 

supersedes the classical diffusive behavior. Furthermore, it has been shown that there 

is an infinite set of measure zero of irrational values of 2~M where (1.5) has a 

possibly singular continuous spectrum Ol~. The physical consequences of this mathe- 

matically interesting result seem not quite clear at present. 

lhe quantum e f f e c t s  which have been ment ioned occur as a consequence o f  coherence 

and are t h e r e f o r e  ve ry  f r a g i l e  aga ins t  any p e r t u r b a t i o n s  reduc ing coherence in  a 

wavepacket E12~. Damping mechanisms are ve ry  impo r tan t  p e r t u r b a t i o n s  o f  t h i s  k ind ,  

I t  i s  the purpose o f  the p resent  c o n t r i b u t i o n  to  rev iew  our recen t  work concern ing  

the i n f l u e n c e  o f  quantum e f f e c t s  i n  the d i s s i p a t i v e  s tandard map ~ 3  - 16 ] .  A phy- 

s i c a l  system app rox ima te l y  r e a l i z i n g  t h i s  case i s  a d i a tom ic  molecule in  a sur -  

rounding medium induc ing  f r i c t i o n a l  e f f e c t s  e x c i t e d  r o t a t i o n a l l y  by a microwave 
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field. The classical map, in this case, takes the form 

k 

(i.7) 

with 0~ 2- i. Under the map (1.7) phase space volume is reduced by a facLor Z in 

each step. Therefore the ~ -limit sets of eq. (1.7) (i.e. the invariant manifolds 

approached for n 4 oo ) have zero volume in phase space and are either fixed points, 

limit cycles, or strange attractors with fractal dimension d~ 2. As is easily seen 

from the first of eqs. (1.7), the co-limit sets must all lie in the compact region 

IPl ~ K  2~-x) • (1.8) 

For v:= C1-&) + O the ~-limit sets must approach invariant manifolds of the con- 

Servative systems and the bound (1.8) is removed to infinity. A discussion of the 

Periodic orbits of the classical map has been given in tITS. In the following sec- 

tions we first describe a quantum version of the map (1.7) in the form of a master 

equation (section 2). Then we consider the stationary state af the quantum map 

(section 3), i.e. quantum effects on the invariant probability distribution around 

a strange attractor. Finally, in section 4 we turn to dynamical results for the 

mean square angular momentum of the rotator and consider the fate of localization 

and quantum coherence as a function of the dissipation parameter V = (I-~). 

2. The Quantum Map 

A quantum map defines the transformation of a state at the discrete Lime n to a 

state at the subsequent time n+l. For a conservative quantum system a state is des- 

eribed by the wavefunctian J~> and the quantum map is given by a unitary operator 

U as in eq. (1.4). The state of a dissipative quantum system, on the other hand, is 

defined by the density matrix~ . A quantum map ~,,I can still be defined in 

this case, provided the knowledge of~ issufficient, in principle, to predict the 

state ~.I . This is only possible, if memory effects are negligible, i.e. if the 

time-evolution of the density matrix is Markovian, which we assume in all that fal- 

lows. Then an operator (more precisely a superoperator) ~ in the linear space of den- 

sity matrices exists which defines the map 

~n*1 =O ~n . (2.2) 

The operator G must preserve the normalization, positivity and hermiticity of the 

density matrix~ and must be consistent with the uncertainty principle, which has 
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e .g .  the consequence 

Tro~ ~ I, (2.3) 

where equality holds for a pure state. 

An operator G with these and the additional property that the classical limit of 

the quantum map reproduces the classical map (1.7) has been given in [13], but, as 

slated there, even within these restrictions, it is not unique. For simplicity the 

operator G ~as chosen as a product G =U.D where U is a unitary operator in the space 

of density matrices equivalent to (2.1) if applied to a pure state, and D is e real 

operator describing a purely dissipative process. 

This factorization of the quanlum map corresponds to a faetorization of the classi- 

cal map into a purely dissipative step 

P~½ =~tpn, 
(2.4) 

and the purely conservative map 

(2.5) 

which, together~ give back the dissipative map (1.7). Quantum meehanically, the dissi- 

pative step (2.4) is described by the solution of the initial value problem of the 

Markovian master equation 

( I t  (2.,) a~ 

with F+:=(F) + and F defined by 

(aO l~O 

In (2 .7 )  we use the angu la r  momenlum r e p r e s e n t a t i o n  de f i ned  by 

p l t > =  2a.h t JL >. (2.8) 

Eq, (2 ,6 )  descr ibes  the abso rp t i on  o f  quanta o f  the abso lu te  va lue  o f  rpl by a r e -  

s e r v o i r .  We use the s o l u t i o n  o f  eq. (2 .6 )  to  d e f i n e d  by 
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~ . ~  =_Dg. = exp(L)g~, (Z.9) 

and U by 

9~-~ -- u 2 ~ .  ~ = u~ u~, (2.10) 

where the unitary operator U in the space of state vectors is given by eq. (1.4). 

Explicitly, the quantum map in angular momentum representation then takes the form 

<t' Ig~.~ Ira'> = Z G(Cm' l~,m)<t i~%lm.', (2.n) 

With 

mi~(ll.l, l m l ) .  "/ .~ ~,~ 

U[,m -FiJ,m-i~W 
j--1 

U((,~'{tm) := <dlU{t)<mlU+im'>: (2.13) 

Here @p,o is unity for p~O and vanishes otherwise, lhe operator G , according 

to eq. (2.12) is given by a sum 

G =Z j, 
J 

where each  o f  t h e  o p e r a t o r s  G. d e s c r i b e s  t h e  p r o p a g a t i o n  from t ime  n t o  n+ l  w i t h  - - j  

t he  a b s o r p t i o n  o f  j q u a n t a  o f  Ipl by t h e  r e s e r v o i r ,  l h e  s u p e r p o s i t i o n  o f  t h e  Gj 

in  eq.  ( 2 . 1 2 )  shews t h a t  p r o c e s s e s  w i t h  d i f f e r e n t  v a l u e s  o f ' j  a r e  m u t u a l l y  i n c o -  

h e r e n t ,  ~ h i l e  c o h e r e n c e  i s  p r e s e r v e d  f o r  a l l  a m p l i t u d e s  from Lime n to  n+l  w i t h  

t he  same v a l u e  o f  j . Th i s  c o m p e t i t i o n  be tween  c o h e r e n t  end i n c o h e r e n t  p r o -  

e e s s e s  i s  t he  main f e a t u r e  o f  G . D e t a i l s  o f  c o u r s e  depend on t he  a s s u m p t i o n s  we 

made on t h e  form of  t he  m a s t e r  e q u a t i o n .  However, t he  g e n e r a l  f a c t  t h a t  some a m p l i -  

t udes  add c o h e r e n t l y  w h i l e  o t h e r s  add i n c o h e r e n t l y  i s  i n d e p e n d e n t  o f  t h e s e  assump- 

t i o n s ,  and we can t h e r e f o r e  hope t h a t  t h e  map (2 .12 )  can g ive  us i n s i g h t  in  t h e  

q u a l i t a t i v e  consequences  o f  t h i s  e o m p e t i t i a n .  In t he  f o l l o w i n g  i t  i s  u s e f u l  to  i n -  

t r o d u c e  t h e  r e p r e s e n t a t i o n  o f  t he  d e n s i t y  m a t r i x  by t he  Wigner q u a s i - p r o b a b i l i t y  

d e n s i t y  i n  t he  phase  s p a c e O k q ~ l , - ~ 9 4 m .  I t  i s  d e f i n e d  by 
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w,(p,q):: wf (2.1a) 

(2.15) 

Two somewhat unusual features of this representation are worth pointing out. One 

is the fact that kA/(~q) has support in phase space not only on the quantized values 

of angular momentum p~ = 2mh~n with integer m but also at momenta p~ where rn is 

half-integer, as is shown by eq. (2.14). A second related peculiarity follows from 

eq. (2.15) which shows that W~9(q) for [:2~is periodic in q with period 1/2 

rather than i, while W~O(q) with (=2w+I is antiperiodic in q (i.e. changes sign) 

with period 1/2. It follows that the unphysical values of angular momentum drop out 

if W,(~q) is integrated over the unit interval of q to yield the probmbi]ity dis- 

tribution of angular momentum. The Wigner representation is particularly useful for 

a discussion of the classical limit of the quantum map and the leading quantum 

corrections. Detailed derivations are given in [13] and we merely present the result 

here. Instead of presenting the map for the Wigner quasi-probability distribution [13] 

it is rather more transparent to write down an equivalent 'quasi-stochastic' map [18]. 

It takes the form 

K . 

(2.16) 

where the 'quasi-noise' terms ~,+4 and ~,+i are uncorrelated for different values of 

m (expressing the basic Markov assumption we made) and have non-vanishing second and 

third order cumulants 

(+;L)~ 

o, 

(2.i7) 
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<%s>:_ # Ksin2~ff._~. 
2~,..~ 3 (2.18) 

Higher order cumulants occur also, but are proportional to higher powers of~ and 

hence negligible for ~ sufficiently small. The fact that third order cumulants of~, 

appear has the consequence that ~, is distributed with a quasi-probability density 

which is not everywhere non-negative. Hence, ~Z~ cannot be simulated by classical 

noise, except in an approximation where the third order cumulant is neglected. In the 

latter approximation the quantum map is indistinguishable from a classical map with 

noise. 

The map (2.16) is stochastically equivalent to a map for a quasi-probability 

density W~[~q) from which the Wigner quasi-probability density (2.15) can be ge- 

nerated by 

1 ,"- '  [ + ,-,-, 

(2.19) 

Hence, neglecting third and higher order cumulants, eq. (2.16) can be used to ge- 

nerate a semi-classical approximation for the Wigner function by stochastic simu- 

lation. 

Semi-classical approximations of this kind have been used in earlier work on 

quantum effects in chaotic optical systems like the complex Lorenz model (single- 

mQde laser) [19] and second harmonic generation [20]. In these more realistic sys- 

tems it has so far not been possible to improve on this approximation, while this 

i~&spossible in our present quantum map. Therefore, it is interesting to compare exact 

and semi-classical results in some cases in the following. 
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Time evolution of the total energy over the first ten iterations (a) and reduced 
angular momentum distribution in the stationary state (b), shown for the quantum me- 
chanical (solid line), semiclassical (coarse-dashed line), and classical (fine-dashed 
line) cases. The parameter values are K = 5.0, A~= 0.3, and for the quantum mecha- 
nical and the semiclassieal cases ~ = O.O1/Z~ . 

In this section we present some numerical results [14] for the quantum map (2.11) 

for the parameter values K = 5.0, ~ = 0.3, ~ = 0.01/2~. (We recall that ~ is given 

in units in which the moment of inertia of the rotator and the kicking period are 

unity), lhe initial state chosen in the numerical work is always the zero angular 

momentum eigenstate ~o= Io )<oi . For the value of ~ chosen one expects to reach 

a steady state after a relaxation time ~n = (~_~)-I , i.e. after only a few time 

steps. In fig. la we plot the averaged kinetic energy of the rotator as a function 

of the discrete time n for the classical map (fine-dashed line), the semi-classical 

map neglecting third order cumulants (coarse-dashed line) and the fulI quantum map 

(full line). A steady state is apparently reached after a relaxation t£me which is 

not infIuenced by quantum effects. There ere quantum effects visibIe in the size of 
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the averaged kinetic energy, but it can also be seen that these effects are very 

well approximated by the semi-classical noisy map. In fig. lb we also show the full 

Probability distribution of angular momentum in the steady state in the three cases. 

Only the region p>O is shown because of symmetry. Again quite drastic quantum effects 

are visible, but they are well described by the noisy map. We now return £o results 

for the full phase-space distribution in the steady state. In figs. 2a-d various 

phase-space functions are plotted against q for fixed values of p over a base-line 

whose vertical position gives the respective value of p. This method was found to 

produce quite clear pictures of the phase-space functions. In fig. 2c the exact 

Wigner distribution W(OCq)i s plotted in this way, fig. 2b gives the corresponding se- 

mi-classical result W(~R) , fig. 2a shows the classical phase-space distribution. 

The (in principle infinitely) nested structure of the classical strange attractor is 

seen to be smoothened by the quantum noise already in the semi-classical distri- 

bution. The full Wigner function W(~q) is seen to differ from W(~R) by the ob- 

vious 'kinematical' effects of quantization (only p=a~[ with integer L occurs in 

the Wigner function) and doubled periodicity described by eq. (2.19). In addition, 

however, wavy patterns are seen to occur in W(p,q) (making W(p,R) non positive- 

definite) which are not at all present in the semi-classical result.lhese patterns 

are therefore produced by higher order cumulants in the 'quasi-stochastic' map. Fi- 

nally, in fig. 2d we show the corresponding result for the positive @-function [2~ 

c~ Cp~q) := <~Ifl~>, (3.i) 

where Is> is s coherent state with amplitude co= ~ ( ~(mod 1) +#p) is re- 

lated to V~/(ptR) by 

z , -21°~-~'{z 
Qcp, q) = ~ Sa o~ e w(p~#) (3.z) 

and appears correspondingly broadened. In contrast to W(~q), the function QCp, q) is, 

in principle, observable. It is the best locally resolved measurable phase-space dis- 

tribution in quantum theory and therefore the best one can do, in principle, to 

observe local features of the Wigner distribution. We notice that all wavy features 

of the Wigner distribution have disappeared in Q . In fact the substitution of ~/(5~) 

for W(~q) produces a practically indistinguishable result. We see therefore that 

observable results in the present case are well reproduced by the semi-classical 

approximation. We can expect this to be true whenever the condition 

is satisfied for the cumulants in eqs. (2.17), (2.18). This condition is well satis- 

fied for the parameter values chosen here. 
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Phase space distribution functions in the stationary atate. Parts (c,d) results 
of quantum mechanical calculations, parts (a,b) results of iterations of the clas- 
sical map, in (b) with quantum noise simulated in the semiclassical approximation. 
Part (d) is a coarse-grained version of part (c). 
The parameter values are K = 5.0, ~ = 0.3, ~ = 0.01/2~ (b-d), ~ = O(a). 
The distribution functions are point symmetric with respect to the origin and pe- 
riodic in phase; on]y the upper half of one period is shown. 
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4. Localization and Delocalization 

As has been mentioned in the introduction, the Floquet (quasi-energy) states of the 

Conservative quantum map determined from eq. (2.5) localized in the action variable 

for typical values of~ . Floquet states IVy> which are neighboured in the action va- 

riable within twice the localization length L have finite overlap and their eigen- 

Phases repel each other. Hence their mean spacing of eigenvalues can be estimated as 

~=2~/2L . For times n<n ~m 2~/6~ the uncertainty principle tells us that the 

quantization of Floquet states cannot yet be resolved in the time evolution of an ini- 

tially localized wave packet. Hence, there is classical chaotic diffusion of the action 

variable for times n<n~ and one estimates from eq. (1.2) (if p~- 0 ) 

One can use this to estimate the localization length L of the conservative map in a 

self-consistent fashion as the momentum scalep¢=,~JIMIwhere the classical diffusion 

has to break down [22]. Hence 

and one concludes t h a t  

(4.3) 

as an estimate of order of magnitudes. How is this simple picture changed by dissi- 

Pation D3], El5]? New important time scales are introduced by dissipation, namely 

the classical relaxation time to the steady state ~= (~.~)-I and the mean life-time 
U -4 of a quasi-energy state |U~> due to dissipation mZ= C(I-~)<u~I|pII ~>/2~] 

The latter life-time can be computed from the master equation. If we insert in the 

latter the momentum scale 2~L we obtain the time scale 

"c =~_~)-----[- - ~.~) Kz (~.4) 

on which incoherent transitions due to dissipation occur in a wavepacket initially 

started at go = Io><oi and propagaLing under Lhe dissipative map. If n~ n~ , 

i.e. 

( ~ ~__~_..!~ ~ ~ 
~'~ >;~ K ; , (4.5) 

incoherent transitions dominate over coherent propagation and we cannot expect to see 

even transient signatures of localization. Another way of stating the condition (4.5) 

is 
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> I,% (4.6) 
I~@LI 0 +' 

where 6~o and 2~]mo are, respectively, the average level spacing and level widths 

of Floquet states near p=O within a distance L . Condition (4.5) was satisfied for 

the parameter values chosen in the preceding section. We-now define the parameter 

domain of 'weak dissipation' by the condition 

2~ < ~i ° (weak dissipation) . (4.7) 
Wo 

lhe disruption of cohere~,ce by incoherent processes then does not occur sufficiently 

frequently to inhibit localization altogether, but incoherent transitions now move 

the wavepacket diffusively from one localized state of size L to the next. After 

such incoherent transitions the action variable therefore spreads diffusively accor- 

ding te 

<,~ pz >_ : L t N .  (4.B) 
<.+Zmr~)* 

+he time-scale +N/~m for incoherent processes also depends linearly on the momen- 

tum scale (cf. the expression for m;L given above) and we can therefore estimate self- 

consistently 

: (I-x)LV , 

which gives 

m~ (4.1o) N=÷--~ , 

and with eq. (4.8) 

<z~pZ> __.,[K "~ ~ n z .  (4.11) 

Eq. (4.11) remains valid only as long as the widths of the Floquet states involved 

(which grow proportionally mith the scale of angular momentum) are small compared 

to their average level spacing ~uJ~ =Z~/2L. The angular momentum scMe in the steady 

state can then be estimated from eq. (4.11) inserting md: (I-)'}'I for m . Then me 

f ind 

<ap '>  = "r k~ 'mJ 

and, se l f -cons is ten t ly ,  the condi t ion 

(4.12) 

(4.13) 
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for the validity of eq. (4.11) until the steady state is reached. We use eq. (4.15) 

as a definition of the parameter regime of very weak dissipation, lhe condition 

(4.13) just guarantees thafi fihe angular momentum scale (4.12) in the quantum steady 

state is smaller than fihe corresponding scale 

K 2 -; 
<~P=> = 7~--"3 1~;~ " (4.14) 

in the classical steady state. In other words eq. (4.13) ensures that effects of 

localization are visible even in the steady state. If eq. (4.7) but not eq. (4.13) is 

satisfied, eq. (4.11) must break down before the steady state is reached. The break- 

down occurs once the angular momentum scale ]p| is reached where the widths and 

average spacings of quasi-energy levels are comparable, which yields 

Ipl  = [zC'1-x)O</,;.~"h)Z'l "'r ( z ~ )  

v~,,, = ['(.+_;)~ ( ~ l ÷ ~ , h ) + ] - 1  
(4.15) 

far the angular momentum scale and the time scale, respectively, where the transi- 

tion occurs. For longer times and larger angular momenta the system returns to 

classical diffusion. Therefore, in the region of weak dissipation (but not very weak 

dissipation) localization is a transient phenomenon only, whose signature is the m- 

dependence of eq. (4.11). 

Let us finally consider the preliminary numerical evidence for the various re- 

gimes of dissipation which we have obtained so far. 

In figs. 3,4 we show results for the long-time development of the mean rotational 

energy <p'/2> of the rotator for a kick strength K = I0.0 far above Kc~ l, with 

= 0.15Cy~.I)/~ (the golden mean factor serving to avoid the influence of quantum 

resonances). For these parameter values, the conservative case (dashed line in figs. 

3a,4a)is characterized by an initial diffusive increase of the energy with an esti- 

mated rate <p~/2> = 0.6~ and an onset of localization after ~*~ 86 time steps, 

leading to a quasi-periodic behavior with the energy fluctuating around (pz/2) ~ 13.6. 

There is reasonable agreement of order of magnitudes with the respective numerical 

Values ~*#40, <p~/22:O~ , <p~/Z >~ 20 . 

The full line in fig. 3a corresponds to a dissipation rate 1-~= 5.10 -6 in the re- 

gime of extremely weak dissipation 0 < I-~ ~ 1.3"I0 "s • We observe s slow increase 

of the mean energy compared to the conservative case, the fluctuations still follow- 

ing closely those in the conservative system. Moreover, we indeed find a nearly qua- 

dratic time dependence for the difference of the two energies. In the log-log plot 

fig. 3b the actual exponent is compared with the theoretically estimated value 2 
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(straight line). The absolute value of the incre@se rate <p~/2> m1.10-~'is in 

reasonable agreement ~ith the estimated value <p~/2> = 0.6"I~m I. With 1-A=1.0"10 -e, 

the result shown in fig. 4a (full line) corresponds to the regime of weak dissipation 

(1.3.10-5~ 1-A~ 2.7. I0-4). In this case, the onset of localization still remains 

visible. Disruptions of coherence (whose time scale is n¢=230 here), however, domi- 

nate the behavior of the system soon thereafter. The increase of energy remains far 

below the classically expected rate, which we attribute to the fact that the average 

<~*/Z> receives contributions from angular momentum scales both in the localized 

region at small|pJand the delocalized region at IsrgeIpl; in any case there is no 

more evidence for a quadratic time dependence. In fig. 4a the fluctuations cease 

to be correlated with those of the conservative quantum system after ~ 1000 itera- 

tions, which is consistent with the estimated value of mb~ 1300. 

In fig. 4b we present the distribution over angular momentum obtained after i000 

time-steps for the same parameter values as in fig. 4a. For small angular momenta, 

where localization of quasi-energy states is efficient and diffusion is prohibited 

the distribution is different in form and less smooth than for large angular momenta 

where localization of quasi-energy states is destroyed and diffusion occurs. The mo- 

mentum scale estimated from (4.15) is JpJ = 28 and somewhat larger than but of the 

same order of magnitude as the momentum scale Jpf ~ I0 where the distribution changes 

its form. 

In the experiments of figs. 5,4 the increasing angular momentum scale prevented us 

from following the system into the steady state, which should be reached after 

n 4 ~ 2-i05 and after ~a ~ 1"104 iterations for the cases of extremely weak and 

weak dissipation, respectively. 

In summary, the numerical results demonstrate the existence of the various regimes 

of dissipation strength p= (4-;.) and localization or deloealization which have 

emerged from our qualitative analytical estimates. Furthermore, these estimates are 

found to give useful orders of magnitude which help to interpret the numerical re- 

suits. 
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COHERENCES AND CORRELATIONS IN CHAOTIC OPTICAL SIGNALS 
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Although it is common to analyze fluctuating optical signals on a 

statistical basis and to use correlation functions and spectral analysis to 

find bandwidths, pulse shapes and short term memory features, it is now 

possible to perform certain specific numerical studies which can uncover 

characteristics of the causes of the fluctuations. That is, by analysis of 

the time series of the signals, we can distinguish differences between 

broadband fluctuations caused by deterministic effects and those caused by 

stochastic processes. We are very familiar with the notion that many 

random processes cause Gaussian amplitude fluctuations and the 

corresponding negative exponential intensity probability distribution 

function. Among such processes is spontaneous emission from a large and 

dilute collection of incoherently excited atoms. In contrast, 

semiclassical laser light can be described by a delta function distribution 

of intensity and only a slow phase drift for the complex electric field 

amplitude. 

Recently simple algorithms have been offered which aid in determining 

whether the broadband fluctuations of a signal have their origin in 

stochastic or deterministic processes [i]. Deterministic processes can be 

easily identified if they generate constant or periodic signals. However, 

when the deterministic process generates seemingly random fluctuations, 

then the situation may well be that which is now called "deterministic 

chaos", a particular form of evolution in the phase space of the system. 

Chaotic behavior often generates broadband spectra that are essentially 

indistinguishable from those caused by stochastic noise. In particular for 

lasers, chaotic dynamics can cause the laser to have an optical power 

spectrum which closely resembles the spectrum of spontaneous emission. 

Work in the last five years has identified methods of analysis of 

seemingly random signals which can distinguish some types of chaotic 

behavior from stochastic behavior. The basic method is to take a digitized 
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record of one fluctuating variable, use it to reconstruct a topological 

equivalent to the evolution of the system in its variable space, and then 

to measure characteristics of the set of points forming the solution. For 

low dimensional chaotic systems, the solution set forms a low dimensional 

fractal of dimension larger than two. By careful analysis of the dimension 

of the reconstructed attracting set, one can find fractional values which 

are clearly different from, and smaller than, the integer values that would 

be characteristic of stochastic noise filling of a variable space of the 

same number of dimensions. 
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Figure I: Two examples of experimentally measured intensity power spectra 
for a spontaneously pulsing, single mode, xenon-helium (inhomogeneously 
broadened) laser [I]. 
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Figure 2: Slopes of the Correlation integral for different embedding 

dimensions for digitized intensity time series corresponding to the power 
spectra shown in Fig. I: dimensions of order one for the periodic signal 
and of order 2.2 for the quasiperiodic signal with broadband features [I]. 
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These techniques have been applied to the analysis of laser signals and 

there is evidence that broadband features of the optical power spectrum are 

in certain cases representative of chaotic rather than stochastic behavior. 

An example is shown in Figures 1 and 2, where we show the intensity power 

spectra from experimental measurements and the slopes of correlation sums 

for the Grassberger-Procaccia method of calculating the correlation 

dimension [see Refs. i and 2]. The plateau regions indicate that a fractal 

structure exists over a certain length scale in the attracting set and can 

be taken as strong evidence for chaos. Nearly the same values for the 

dimension were found when we analyzed the numerically generated time-series 

o.o i 

(a) 

(b) 

0.0 
I 

Figure 3: Temporal fluctuations of the amplitude (a) and the intensity (b) 

for the Lorenz-Haken model in the chaotic regime. 
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that represent solutions for the intensity output of an inhomogeneously 

broadened laser [i]. 

We have more recently inquired about other properties of a chaotic 

signal in order to probe the possibility that the measurement of coherence 

or correlation functions might reveal chaotic dynamics either more clearly 

or with greater computational ease. 

As examples of work of this nature, we show first the results for the 

Lorenz-Haken model for a single mode, homogeneously broadened laser in 

resonance [3]. In Figure 3, we show examples of the characteristic time 

evolution of the field amplitude and the intensity in the chaotic region. 

In Figure 4, we show the corresponding power spectra. Note that the 

amplitude spectrum is smoothly broadband while the intensity spectrum shows 
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Figure 4: Power spectra corresponding to the time series in Figure 

Vertical scale is i0 dB per division. 
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distinct peaks, over 30 dB above the broadband noise as a result of the 

elimination of the phase noise part of the amplitude fluctuations. The low 

frequency portion of the power spectrum of the intensity is also 

significantly reduced. As both signals are derived from the same chaotic 

dynamics, we see that the degree of chaos is not equally revealed by 

different variables or by nonlinear functions of those variables. 

Similar results have been found for the model of an inhomogeneously 

broadened laser which we have used to successfully model experimental 

measurements [4]. The major distinction is that in this case, chaos is 

0.0 
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Figure 5: Electric field amplitude (a) and intensity (b) pulsations from 

numerical integration of a model for an inhomogeneously broadened ring 

laser. 
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Amplitude (a) and Power Spectra (b) for the signals shown in 
Vertical scale is 10 dB per division. 

found very close to the threshold for laser action. 

Some of the information contained in the contrast between the intensity 

and amplitude spectra can be useful in interpreting experimental data. We 

recognize that chaotic evolution may cause a large a/nount of broadband 

phase noise while the effect on the intensity is predominantly periodic 

modulation with a lesser amount of chaotic fluctuations. If we return to 

some experimental data of several years ago for a Fabry-Perot He-Ne laser 

(similarly inhomogeneously broadened on the 3.39 micron line and unstable), 

we can compare this information with the high-resolution spectr~ that could 

be obtained because of the intrinsic quiescence of the He-Ne gas discharge 

(in contrast to the noisiness of the He-Xe discharge). In Figure 7 we 

display several samples of our He-Ne data [5] which show the kind of 

intensity power spectra we find for the model calculations for 

fully-developed chaos. Here also, the periodic modulation is more than 

20dB above a broadband portion of the spectrum. The broadband spectrum is 

peaked at the frequency of the periodic modulation and there is less 

broadband noise near zero frequency. This suggests to us that we should 

repeat the He-Ne experiments to obtain clear heterodyne spectra which 

should reflect the non-periodic and broadband nature of the amplitude 

spectrum obtained from the models. 
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Intensity power spectra for a chaotically pulsing He-Ne laser 

Our alternative method of analysis is to calculate correlation 

functions. The simplest correlation function, the autocorrelation 

function, is calculated from the data (from which the mean has been 

subtracted) by the relation: 

CII(~) = <A(t)A(t+~)>/<A(t)2> , (I) 

which is related by the Wiener-Khintchine Theorem to the power spectrum of 

A(t) by a simple Fourier Transform. 

Higher order correlation functions can be calculated. However, they 

are then functions of multiple temporal coordinates as different time 

delays can be used in the different factors. We have found that additional 

and helpful information already appears in the simplest form of the 

third-order correlation function 

C21 (~) ~ <A(t)A(t)A(t+~)>/ {<A(t) 2>) 3/2 (2) 

Results for the Lorenz-Haken model are shown in Figs. 8 and 9. Figure 8 

gives the autocorrelation for the signals shown in Figs. 3 and 4, and Fig. 

9 gives the simple third-order correlation function for the same signals. 
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Figure 8 : Autocorrelation function of the chaotic signals from the 
Lorenz-Haken model shown in Figs 3 and 4. 

The third order correlation function for the amplitude shows little 

information because the symmetry of the signal about zero amplitude gives a 

null result for all delays. The third-order function for the intensity 

shows considerably more information with two characteristic decay times for 

the largest part of the signal. One is of the order of the period of the 

dominant intensity pulsation frequency (indicated by the rapid decay from 

CII(0) = 1.0 to about CII(~) = 0.5), while the other is of order of ten 

periods of the pulsation frequency. Other longer term correlations are 

also visible after more than 100 periods of the fundamental intensity 
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Figure 9: Third-order correlation function for the chaotic signals from 
the Lorenz-Haken model. 

pulsation frequency. 

Similarly distinctive features have been found for experimental data 

from the unstable He-Xe laser and they differ from characteristics we find 

in the fluctuations of amplified spontaneous emission from a heavily 

saturated source. 

A major difference found here is that the ASE shows a single peak at 

zero delay time for the third order correlation function, which indicates 

that there is no significant memory or characteristic evolution after each 

pulse. Observing the intensity pulsations in real time we notice that it 



41 

1.5 

0.0 

p 

-I .5 
Figure 10 : 
data from a He-Xe ring laser as described in 

O. 0 time 
t I I i , I ~ . . . . . .  I 

Third-order intensity correlation function for experimental 
[4]. (Data record of 500 pts.) 

- 0 . 6  

0 .0  

0 .6  

I i 

1 
0.0  

I 

time 

Figure ii: Third-order intensity correlation function for experimental 

data from a heavily saturated source of amplified spontaneous emission 

using the same He-Xe 3.51 micron transition used in the laser studies 
(discharge length: 2.0 m; Pressure: 193 mTorr Xe, 4.0 Tort He). Data 
stream of 500 points. The function is inverted because of an inverting 
amplifier in the experimental setup. The signal analyzed here is raw data 

including amplifier noise of about 5%. 

is a common Occurence that the intensity remains near zero after a large 

pulse. We have also found that the fluctuations in copropagating or 

counterpropagating, orthogonally polarized, beams in the ASE source are 

anticorrelated with the strong pulsations in this beam [6]. For this 

preliminary data we believe that there is no significance to the function 
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shown in Fig. Ii other than the large peak near zero delay time. The 

fluctuating baseline for longer times is presumed to arise from the very 

short data record (see Figs. 13 for results for longer data records). 

While it is cormmon to presume that amplified spontaneous emission is 

stochastic in origin and output, we have checked this for our heavily 

saturated source and confirmed that dimensionality tests are unable to 

discern a dimension (and thus unable to discern the existence) for an 

attractor [i]. An improved algorithm for projecting the e~edded 

(reconstructed) attractor onto its principal axes, using the singular value 

decomposition techniques espoused by Broomhead and King, was also applied 

to the data and again a dimension or characteristic structure for an 

attractor failed to emerge [7]. We might have expected some deterministic 

features caused by the evolution of intense pulses in a superflourescent 

manner. 

Thus the ASE represents an optical signal which has a broadband 

spectrum equivalent to that of a chaotic laser, yet the origin of the 

fluctuations in the two cases is quite different. In fact, this is 

immediately evident in the intensity power spectra. Unlike the chaotic 

laser which has a broadband amplitude spectrum associated with a 

predominantly periodic intensity pulsation, the ASE reveals no underlying 

dynamical structure as its intensity power spectrum is as smoothly 

broadband as the amplitude spectrum. The intensity power spectrum in this 

case is the natural homodyne convolution of amplitude spectrum with itself 

as would be expected for a stochastic source. We recall that the periodic 

features of the intensity of the chaotic laser signal, which could not be 

predicted by convolution of the amplitude power spectrum, indicate that 

this is not similarly stochastic. 

Other stochastic features of the ASE signal are revealed by measuring 

the intensity probability distribution function which is shown in Figure 

12, and the higher order correlation functions defined by 

grLm(~) = <(A(t))n(A(t+z))m>/ (<A(t)2>) (n+m) /2 (3a) 

and 

Cnm(~ ) = gnm(~) - gnm(OO) (3b) 

which are shown in Figure 13. Assuming that the amplifier and detector 
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noise is independent of the signal and is added to the photocurrent signal, 

we have subtracted away the corresponding cumulants of the noise determined 
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Figure 12: Intensity probability distribution function fo= heavily 
saturated amplified spontaneous emission. 
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Figure 13: Correlation functions of the digitized ASE intensity using data 
records of 60,000 points. The gain is somewhat more heavily saturated. 
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by measuring the data record with the optical signal blocked. 

Here we see another indication of the lack of deterministic 

correlations in that the correlation functions die out quickly without long 

term ringing. The second and third order correlation functions do show a 

secondary peak at about 70 ns, coincidentally close to the characteristic 

duration of the anticorrelation effects seen earlier [6]. However, as this 

data is preliminary, we are not yet certain of the reliability of this 

feature and we will be investigating it further. The higher order 

correlation functions are narrower in time, indicating that the pulses of 

greater height are also narrower as we could infer from direct observation 

of the intensity time series. 

Though not shown here, the intensity and amplitude spectra are both 

broadband and without peaks within the resolution limits of our rf spectrum 

analyzers. 

CONCLUSIONS 

It appears that intensity power spectra, intensity correlation 

functions, and heterodyne spectra (if available) can be used together to 

build a strong case for stochastic or deterministically chaotic origins for 

fluctuating optical signals. When the intensity power spectrum contains 

peaks that are not predicted by the differences between peaks in the 

amplitude spectrum, it is likely that there is deterministic evolution 

causing the signal. When, instead, the intensity power spectrum is simply 

the homodyne convolution of the amplitude spectrum and when the spectra and 

higher order correlation functions show no peaks other than the ones near 

zero, then it is likely that the signal has stochastic origins. 

There is clear evidence in this dynamical single-mode laser chaos that 

the phase of the field is a "key player" in the chaotic motion. However, 

all of the variables are dynamically coupled and at least three must be 

actively involved to produce the chaos. In the case of the Lorenz-Haken 

model, we have taken the laser in resonance, in which case the field is one 

of only three real variables in the system. Clearly a broadband spectrum 

of frequencies is involved in the amplitude chaos by a combination of 

switching sign and pulsing magnitude. It is rather surprising that the 

modulation of the intensity is so relatively periodic. The projection of 
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the chaotic attractor onto an intensity phase space shows relatively weak 

blurring due to the chaos. One can partially understand the chaos as 

predominantly frequency modulation while the intensity modulation remains 

predominantly periodic. Nevertheless it is, of necessity, a matter of 

degree. The chaotic modulation must be present in all three of the 

variables. 

The distinction between phase and intensity is all the more puzzling 

because the field variable in this case is real. It would be easier to 

understand if the field amplitude were complex, as it could then be 

described by two real variables (a normative amplitude and a phase). The 

phase noise we see corresponds to the hopping between the two basins of 

attraction in the regions of positive and negative field amplitude. 

"Phase" in this case means the sign of the electric field and it switches 

telegraphically in a chaotic manner. 

We are not certain how the emphasis on chaotic switching relates to the 

different kind of behavior when the laser is detuned (requiring five 

equations in a generalized Lorenz-Haken model). Both experimentalists and 

theoreticians have pointed out the the detuned laser is much more likely to 

exhibit periodic rather than chaotic pulsations. 

The importance of phase chaos is not universal in optical systems as in 

many models and experiments, such as for the modulated laser discussed in 

this volume by Tredicce, only the intensity is involved (and not the field 

amplitude) as one of the dynamical variables. 

Continuing studies are directed at improving the distinctions that can 

be made and testing other correlation and coherence measures for their 

relative aid in discerning features that are characteristic of stochastic 

or deterministic causes of fluctuations. 
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In recent years there has developed a rapidly growing interest in the manifestly quantum or 

nonclassical features of the electromagnetic field. From the perspective of quantum optics, such 

nonclassical features are of great intrinsic interest; however, a widening audience is now being 

attracted to problems in this area because of potential applications to measurement science, to optical 

communication, and to atomic spectroscopy. Squeezed states of the electromagnetic field are one 

example of quantum states that are the subject of intense activity(l), with several observations of 

squeezing now having been reported(2-7). In at least one case, a sufficient degree of squeezing to 

warrant serious attention to possible application has been demonstrated(4). Squeezing refers to the 

phase dependent redistribution of the quantum fluctuations of the field such that the variance in one of 

two orthogonal quadrature operators drops below the level of fluctuations set by the vacuum state of 

the field (file zero-point level). 

While a diverse set of processes has been identified for squeezed state generation(8), it has 

proven to be somewhat difficult for a variety of scientific and technological reasons to find 

experimental systems that actually fulfill the potential indicated by many model calculations. In this 

paper we wish to describe a new regime for squeezed state generation involving a collection of two- 

level atoms coupled to a single mode of a high finesse resonator. We demonstrate both theoretically 

and experimentally that significant degrees of squeezing can be achieved by employing the normal- 

mode structure of this coupled system in a domain in which the oscillatory exchange of excitation 

between the cavity mode and the atoms in the cavity provides the requisite phase sensitive amplification 

and deamplification of quantum fluctuations. With few exceptions (9, 11), previous investigations of 

this system have focused on the "good-cavity" limit in which the atomic variables have been 

adiabatically eliminated and with them the very structure that we have identified(10, 12-15). 
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To gain qualitative insight into the nature of the processes responsible for squeezed state 

generation in this new regime, we begin with an analysis of the interaction of a collection of N two- 

level atoms with a single mode of a high finesse interferometer. The model Hamiltonian H for this 

system has been extensively studied in quantum optics and is taken to be of the form(16,17) 

H = H 0 + H a + He, 

H0=(tlcoa/2) J~ + "tic0 c a+a+ 'hg[ i J  a + +H.c.] (1) 

The coherent coupling of the atomic polarization to the cavity field is described by H a. {Jz ,J ±} are 

collective atomic operators for the N atoms of transition frequency ~a ,  and {a,a + } are the annihilation 

and creation operators for the single cavity mode of resonant frequency 6%. The atoms and field mode 

are coupled through an assumed dipole interaction with coupling coefficient 

g = ( O~cg2/2tie0V)t/z. 

Decay of the atomic inversion is assumed to be purely radiative at rate 3 r , while the atomic polarization 

decay rate is designated by y l .  Both decay processes are described by H a. The field amplitude 

decays at a rate ~c via coupling at the cavity mirrors, to a set of continuum input-output modes as 

described by H c ,which also includes the possibility of excitation by an external field of frequency r.th. 

While an incredibly diverse set of phenomena is described by Eq. (1), we wish to focus on a 

feature of this Hamiltonian that is well known within the context of cavity QED with Rydberg 

atoms(18-2t) but which is often overlooked in optical physics (22). For co a = o3 and for a weak 

inlracavity field x<<l,  with x=(<a + a>/n o )~,n o = yZy/4g 2, the atomic system can be replaced by an 

atomic oscillator obeying a boson algebra [b,b+]=I(l 1, 21). In this case H 0 can be rewritten as a 

sum of two uncoupled harmonic oscillations, 

H 0 =1~(o~ + g'fN)Ct+C+ +~(co- g']N)C~ C , (2) 

where the normal mode operators C+ have been introduced, C+ =1l'42(a + ib), with eigenvalues 

L~_=i( co + g'fN). This lifting of the degeneracy of the first excited state of the atom-field system has 

been termed a "vacuum-field Rabi splitting"(19) and is a result of the mutual coupling of the two 

systems of N atoms and cavity mode. If decay is included, Carmichael has shown more generally that 

9~=1/2(y/2+~:) +[1/4 (y/2 - ~)2 _g2 N]I,~ _= ~ _+ i9, where we have transformed to a rotating frame of 

frequency co and have assumed radiative damping, 2y± = ~(11). We see that L+ contains an 
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imaginary part only for 1/21T/2IKI<g'#-N. That is, since a and b are independently coupled to separate 

reservoirs, a periodic exchange of  excitation occurs only if  the decay rates of  the two oscillators are 

not too dissimiliar. It is this exchange that is crucial to our analysis. (In experiments reported 

elsewhere (23), we have observed this oscillatory exchange in transient decay.) 

For describing squeezed state generation, one must extend the above discussion to include 

nonzero detunings and larger intracavity fields. We have carried out such an analysis by linearization 

about the steady state of  the Maxwell-Bloch equations that result from Eq (1). For the sake of brevity, 

in the remainder of  our theoretical discussion we restrict attention to the case 2T]_ = T- The eigenvalue 

structure is found to consist of  five eigenvalues, which in general comprise a set of  one real value and 

two pairs of  complex conjugates corresponding to the eigenfunctions formed from the atomic 

inversion, atomic polarization, and cavity field. Figure I shows the dependence of the imaginary parts 

(`01,~2) of  these eigenvalues on intracavity field x for a fixed value of the atomic cooperativity 

parameter C=Ng2/KT. In Fig . la  the cavity detuning 0 = (co c - t0L)h¢ and atomic detuning A = (¢0 a - 

COL )/T are both set to zero, while in Fig. lb 0 = --0.65 and A = 10.7. The limiting value of (u l ,  a)2 ) 

as x ~ 0  in Fig. la is precisely the vacuum-field Rabi splitting described above, generalized to include 

nonzero detunings in Fig. lb. While for x---)0 the normal mode operators corresponding to these 

eigenvalues are roughly equal admixtures of cavity and atomic operators, for x>> 1 we see two rather 
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F__i~urg 1--Imaginary parts (`01, "02) of  the eigenvalues resulting from a linearizadon of  the Maxwell- 

Bloch equations versus intracavity field x. The frequency `0 is in units ofT(a)  atomic detuning A = 0 = 

cavity detuning 0 (b) atomic detuning A = 10.7, cavity detuning 0 = -0.65. In both plots the ratio ~ of 
cavity loss to atomic decay rate is 11.8 and cooperativity parameter C = 20. In (a) the region x = 1.05, 
6.07 is bistable while in (b) no bistability is present. 
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disparate frequencies in Fig. 1, which are just the usual free-space Rabi frequency 52= x 2 + 4A2(with 

damping given by y) and the cavity ringing frequency 0 (with damping given by ~). Thus in the 

limit x>>(1,A), the eigenvalue problem decouples with two sets of eigenfunctions of character 

determined predominantly by atomic or cavity properties. In our work we concentrate on the region 

around the crossing shown near x=8 in Fig.lb. At this point the eigenvalue spectrum results in a 

phase sensitivity to fluctuations through an eigenmode structure that conspires cooperatively to 

produce squeezing. We note that this approach is quite different from the usual perspective in which 

the atomic variables are adiabatically eliminated by taking ~ =•/y ~ 0(12,14,15) and for which the 

weak field splitting shown in Fig.1 is lost. 

Of course to translate this qualitative discussion into quantitative predictions for squeezed state 

generation, a detailed analysis beginning with the Hamiltonian Eq. (1) must be carried out. Given the 

existing literature in which a generalized Fokker-Planck equation in the positive-P representation has 

been derived for this problem(24), it is straightforward to arrive at an equation for the spectral density 

A(~,f~) describing the fluctuations of the quadrature amplitude y(t,~ )=a(t)e-i~ +a + (t)e ~ of the 

intracavity field. Complexity in the current problem arises from keeping the full set of five dynamical 

variables without adiabatic elimination. Squeezing of the field emitted through the output mirror of the 

cavity is described by the spectrum of squeezing S( ~,~2 )=2KA(~,f2) (25). 

Our results for the spectrum of squeezing S are displayed in Fig. 2. S(~,f2 ) is defined such 

that S=0 corresponds to the vacuum state while S=-I corresponds to perfect squeezing of one 

quadrature amplitude. Note that the frequency f~ at which optimum squeezing occurs in curve (i) is 

approximately given by the frequency of the crossing point in Fig.lb; that is, optimum squeezSng 

occurs near the frequency associated with the vacuum-field Rabi splitting. This behavior is not 

peculiar to Fig. lb and 2(i), but it is rather a common feature found in our numerical studies over quite 

large regions of the parameter space. Another general feature that emerges from our analysis is that the 

value of the intracavity field x at which optimum squeezing occurs is such that x ~ A ; that is, the field 

needs to be increased to the point of the onset of saturation. In Fig. 2 the phase ~ of the output 

quadrature amplitude examined has been optimized at each value off~ to maximize the squeezing. We 

denote the resultant spectrum as S_(f~); the spectrum of squeezing of the orthogonal quadrature 

amplitude with ~ increased by 90 ° is designated S÷ (f~) and is not displayed. 
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~igure 2--Spectrum of squeezing S_ versus offset frequency ~ in units of % with S_ = 0 

corresponding to the vacuum state. The ratio I.t of cavity loss to atomic decay rate is 11.8 (i) 

Cooperativity parameter C = 20, x = 12.1, A = 10.7, 0 = -0.65 (ii) C ---- 100, x = 17.7, A= 18.2, 

0 = -1.2. Note that at each f~ the phase ~ is varied to minimize S_, 

A more global picture of the nature of squeezing in this system is obtained from Fig. 3, which 

shows the dependence of S on atomic cooperativity parameter C. In Fig. 3 each point results from a 

search for optimum squeezing over all ( A,0, f2,x) for given values of (C,I.t). This search is carried 

out in a four-dimensional space with the value of S at any given point in the space requiring the 

inversion of five-dimensional matrices. Note that substantial degrees of squeezing are predicted for 

relatively modest values of (C, x), relative to earlier treatments of squeezed state generation with two- 

level atoms. In addition to the results presented in Fig. 1-3, we have also constructed "isosqueezing" 

contours that indicate that squeezing in this new regime persists over relatively broad regions of the 

parameter space so that in practice the predicted effects should be reasonably robust with respect to 

deviations between actual experiment and the model calculation. 

These results from our numerical evaluation of the spectrum of squeezing together with an 

analysis of the eigenvalue spectrum leads to the following simple picture for squeezed state generation 

via the normal mode splitting of the coupled atom-field system. (1)The splitting in the eigenvalue 

structure (v l ,  v2) must be large as compared to the associated width of the spectral components, 

which for modest values of I x and A is a condition that g',/'N'>>(~:,~/). (2) The cavity damping rate 

must be much larger than the atomic decay rate 7 so that the dominant decay route of the spectral 
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Figure 3--Dependence of the minimum value of the spectrum of squeezing S on atomic cooperativity 
C for fixed ~t. Note that at any point on a curve the values of (A, 0, ~ ,  x) have been chosen for 
optimum squeezing. 

features of A(~) is through the cavity output coupler, g >>l(Note that conditions (1) and (2) imply 

C >> I-t >> 1). (3) The intracavity field x should be increased to the point x ~ A. The first two 

conditions are necessary for forming a coupling induced structure in the system's normal mode 

spectrum appropriate for multiwave mixing. The third condition then ensures sufficient excitation for 

nonlinear processes to occur among the low lying (N-atom)+(cavity mode) states. A clear description 

of "four-wave mixing" in this system has been given by Varada et a1.(26). 

From the perspective of experimental design, the two critical considerations for the observation 

of squeezed states via the mechanism that we have identified are the requirements for large splittings 

a3=gq-ffand large cavity damping 1¢ as compared to the atomic rate ~,, Both conditions drive one to 

small cavity volumes-the lower limit on cavity waist being set by transit broadening and the lower limit 

on cavity length being the requirement of large optical density within the cavity. The cavity finesse is 
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determined by a tradeoff between high finesse F for reaching large values of atomic cooperativity C 

for a given maximum attainable intracavity optical density (C= 0~lF/2rc, with cd=small signal 

absorption of the intracavity medium) and lower finesse for ~t >> 1 and for achieving a good 

approximation to a single-sided cavity for given absorption and scatter losses in the mirror coatings> 

A diagram of  the experimental arrangement that we have employed to achieve these ends is 

shown in Fig. 4. The cavity is formed by a pair of mirrors of radius of curvature lm separated by 

0.83ram. The transmission coefficients of the two mirrors are T 1 =0.0075 and T 2 =0.0002. The 

measured cavity finesse is F=680, while that inferred from the value o f T  1 is F1=840. Hence the ratio 

of output loss through ml to loss by all other avenues is given by c=F ~=0.81, which implies a 19% 

reduction in squeezing as compared to an ideal single-ended cavity. The intracavity medium is 

composed of optically prepumped beams of atomic sodium prepared in the (3 2S l J2 ,F=2,mF =2) state 

and excited with circularly polarized light to the (3 2P3r2,F=3,m F =3) state of the D 2 line. Collimation 

is provided by a 0.5mm aperture in the source oven and by a 0.3mm aperture located 250mm 

downstream from the oven and 15 mm upslream from the cavity waist. The maximum absorption ctl 

for this configuration is c~1=0.2. The fluorescence from the optical pumping beam together with the 

recorded hysteresis cycle in absorptive optical bistability provide a measure of the intracavity density 

and hence of C during the experiments. In separate measurements we have confirmed that to a good 

approximation an arrangement such as the one outlined above can be viewed as a single-mode cavity 
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Figure 4--Diagram of the essential elements of the experiment for generating and detecting squeezed 
states. 
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containing a collection of two-level atoms within the mean-field theory of optical bistability (27). The 

excitation source in the experiments is a commercial frequency-stabilized cw dye laser pumped by an 

argon-ion laser operating at 515rim. 

Detection of the fluctuations in the quadrature amplitude of the signal beam emitted through the 

mirror m l is accomplished with the balanced homodyne detector indicated in Fig.4(28)l The 

photodiodes are EGG-FFD-060 with the glass windows removed and with the reflection from the 

diode surface collected and refocussed onto the photodiode resulting in a quantum efficiency r I = 

0.85 + 0.04. The homodyne efficiency is measured to be approximately e = 0.93 + 0.07 for each 

channel. Over the range 100-200MHz the "shot noise" associated with the 5mA dc photoeurrent 

produced by the local oscillator exceeds the amplifier noise level by greater than 7dB. That the local 

oscillator is indeed at the vacuum level and does not carry appreciable excess amplitude noise is 

confirmed by a comparison of the noise levels observed when the two photocurrents i I and i 2 are 

combined first with 0 ° and then with 180 ° phase shift. With the exception of coherent lines at 

multiples of the 85MHz longitudinal mode spacing of the ion laser, we conclude that the local oscillator 

fluctuations are within +1% of the vacuum level over the spectral range of interest in the current 

experiment. Furthermore, with the 180 ° phase shift actually employed in the squeezing 

measurements, any excess local oscillator noise is reduced by greater than 15dB. 

An example of our observation of noise reductions below the vacuum level is given in Fig. 5. 

The figure displays the spectral density of photocurrent fluctuations, @(O,f2) on a logarithmic scale at 

fixed frequency 12/2n ---200MHz versus local phase ~. The trace marked (i) is the vacuum level 

obtained by blocking the signal beam. The trace labelled (ii) is with the signal beam present and clearly 

exhibits noise reductions R below the vacuum level. Note that the periodicity of these reductions 

with local oscillator phase ~ is n rather than 2n ,  which is the periodicity of intensity fringes in the 

system. Also note that noise reduction is achieved with incident laser power of only a few hundred 

microwatts. After correction is made for the nonzero noise level of the amplifier, the observed 

reduction of-0.8dB below the shot noise level becomes -1.0dB. This figure represents a 20% noise 

reduction below the level set by the vacuum state of the field at the signal port of the balanced 

homodyne detector. We have also explored the dependence of the phase sensitive noise on offset 

frequency ~. In qualitative terms the observed noise reductions extend over the same broad regions 

of frequency predicted by theory. For low frequency (f2 < 50MHz), very large noise enhancements 

R+ above the vacuum level are observed, again in qualitative accord with theory. 



57 

By including the propagation loss (l-T), detection quantum efficiency 11, heterodyne efficiency 

e, and escape efficiency t~ from the cavity, we can relate the spectrum of squeezing S_ to the 

observed noise reduction R_ (4,29,30) 

R(Y2) = 1 + oTneS_(f~). (3) 

+l.OdB 

OdB 

-I ,OdB 

i . . . . . . . . . . . . . . . . . . . . . . . . .  f J  

i I I - - / /  

Local Oscillalor 
Phase qb 

Figure 5--Spectral density q~ (~,~) of fluctuations of the difference photocurrent (il-i 2) versus local 

oscillator phase ~ at fixed analysis frequency f2/2r~ = 200 MHz. (i) Signal input blocked to define 
vacuum level (ii) Phase sensitive fluctuations with signal beam present drop below the vacuum level. 

Operating eonditions--C = 17 +_ 2, t.t = 13, A = 3.5 _+ 0.5. 

By separately measuring the quantities ( tJ, T, rl, e), we thus infer S_ from measurement of R_.  In 

the current arrangement, R_=0.80 corresponds to S_=-0.33, or to a 33% decrease in fluctuations 

relative to the vacuum level before degradation by the various loss mechanisms associated with escape 

and detection. Unfortunately a precise comparison with our theory is hampered at present by a lack of 

quantitative knowledge of (x,0). However with the recorded values of (C=17+2, ~ = 13) Fig.3 leads 

to an optimum prediction S_=-0.66, which is a degree of squeezing considerably larger than that 

actually inferred from the data. Possible causes of this discrepancy include stray absorption due to 

background sodium vapor in the vacuum chamber (2),a reduction in optical pumping efficiency at large 
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atomic detunings (a single laser was employed for pumping of the F=2 ~ F=3 transition), and 

saturation of the detection eleclronics by the noise power contained in the broad detection bandwidth. 

Another difficulty is that at present we do not have a well defined search procedure for optimization of 

the squeezing on the five-dimensional space of experimental parameters. We are currently working to 

eliminate each of these difficulties in future experiments. Of a more fundamental nature is the fact that 

our theoretical analysis is carried out for a traveling-wave interferometer with plane waves while the 

experiments are conducted in a standing-wave cavity with a Gaussian-transverse profile. While we are 

reasonably confident that the deterministic physics is adequately described by a single-transverse-mode 

theory (27) the precise role of a nonuniform cavity mode in altering the quantum fluctuations is yet to 

be understood, although we have carried out a full quantum treatment in the good cavity limit (31). 

In summary, we have identified both theoretically and experimentally a new regime for 

squeezed state generation associated with the coupling of a collection of two-level atoms to an optical 

cavity. The physical process responsible for the squeezing is a coupling-induced mode splitting in the 

eigenvalue spectrum of the system, which for weak fields and zero detunings is just the vacuum-field 

Rabi splitting. We have presented a theoretical analysis of the squeezing in this system based upon the 

formalism developed in Ref.(24,25), and have predicted that large degrees of squeezing should be 

attainable with rather modest values of atomic density and intracavity field. An experiment to confirm 

these ideas has been carried out and noise reductions comparable to the best yet achieved in atomic 

vapors (2) have been recorded. Improvements in our apparatus should lead to observed noise 

reductions of greater than 50%. Apart from squeezed state studies, the investigation of a number of 

problems in cavity QED with the optical system we have constructed should be of some interest. 

This work was supported by the Venture Research Unit of BP and by the Office of Naval 
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I. INTRODUCTION : 

Considerable interest has been devoted lately to squeezed and non 

classical states of the electromagnetic field. As opposed to the coherent 

states introduced by Glauber (I) they are characterized by different 

quantum fluctuations on conjugate guantities (2) like either the two 

quadrature components or the phase and amplitude of the electric field. 

In principle the fluctuations on one of these quantities can be made 

arbitrarily small. Such states have been recently produced experimental- 

ly (3). Numerous ideas have been proposed to generate them in various 

experimental schemes. 

Most of these ideas rely on the use of a non linear Hamiltonian ac- 

ting on the vacuum field, to transform it into a non classical state. 

The Hamiltcnian usually includes terms corresponding to the creation of 

pairs of correlated photons indicating a close connection between pair 

production and squeezing. 

In this paper we shall focus our attention on parametric down conver- 

sion, in which a non linear crystal pumped at frequency ~0 emits two 

signal fields at frequencies ~I and ~2 such that ~0 = ~I + ~2" The corre- 

lation between the "twin" photons produced by parametric process has been 

experimentally demonstrated in the seventies (4) and recently confirmed 

by more precise measurements (5), in agreement with quantum mechanical 

calculations (6). Recently it was used in the degenerate case to create 

squeezed states of light (7) and in the non-degenerate case to investi- 

gate the production of sub-Poissonian statistics via optoelectronic 

feedback (8) . Only the non-degenerate case, in which the signal fields 

can be distinguished by either their polarizations or their frequencies 

will be considered here. 

In contrast with previous experiments, we shall mainly concentrate 

on the study and production of "macroscopic" twin beams, namely intense 

laser-like beams with strong intensity correlation. Indeed, with the 

available C.W. lasers and non linear crystals the parametric process 
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does not generate intense beams because the pump power is spread out in- 

to an infinity of twin modes. In order to favor only a few pairs of mo- 

des, the crystal can be inserted in an optical cavity having mirrors 

with a high reflectivity for the signal frequencies. Above some pump 

threshold, the system oscillates (9) and yields two intense light beams. 

As the photons are created by pairs, it can be expected that the noise 

on the difference 11 - 12 between the signal beam intensities is redu- 

ced. In section II, we theoretically investigate the noise characteris- 

tics of an ideal two-mode optical parametric oscillator (TMOPO) above 

threshold. In section III,we describe our experimental set-up and we dis- 

cuss the predicted phenomena including the effect of losses in the ca- 

vity and the quantum efficiency of the detectors. 

If. THEORY 

In this section, we present a simple theoretical model for computing 

the characteristics of the TMOPO emission. We consider that the signal 

fields are confined in an optical ring cavity (Fig. I) having the same 

damping rate for the two signal modes. We assume perfect phase matching 

and we neglect any loss mechanism other than the transmission of the 

coupling mirror. In addition we suppose that the one pass gain and losses 

are small. The mirrors are perfectly transmissive for the pump beam. 

~ing 0 ~ , H.R. mirvrr~ [ I cou mirror 

pump beam~ ~ c r y s t a ~ /  ~ output ~ crystal length 

L cavity length 
//11/7 / ~ ~ " 

H.R. mirror 

Figure 1: OPO cavity 

Assuming a linear depletion of the pump field inside the crystal, the 

classical equations for the propagation of the fields in a parametric 

medium (9) lead to : 

ei (£) eiki£ = (el(0) + ~ d 0 ~*(0)) (i,j : 1,2) 
3 

i~j 

(i) 

ei(0) and ~i(£) (i = (1,2))are the classical amplitudes of the signal 

field i (with wave vector k.) respectively at the input and output of 
l 

the crystal of length, d 0 is the mean pump field amplitude : 



63 

~0 = a0 (0) - ~ ~I (0) ~2 (°) (2) 

and ~ = 2cxi 

where X is the second order non linear coefficient of the crystal. The 

fields~ i arriving on the coupling mirror are related to the fields ~ 
l 

leaving the coupling mirror (cf. Fig. 2) through the propagation in the 

cavity and in the crystal : 

-ik~L ' + ~e 0 ~j* (i,j = 1,2) (3) ~i e l = ~i 

i~j 

where ~0 = I&ol (a proper choice of the phase of the pump field has 

been made). 

On the coupling mirror of the cavity the signal fields inside the ca- 
l 

vity, ~i and ~i and outside the cavity, ~n and e?ut (Fig. 2) are con- 

nected by 

e. = r~ + tan (4a) 
l 1 1 

out in ~ = -r~ + t~ (4b) 
l 1 1 

where r and t are the reflexion and transmission coefficients of the 

coupling mirror. 

Figure 2: 

out 
l 

At resonance for the signal fields in the cavity (exp(-ikiL) = 1 

for i = 1,2), and with no input signal fields, one gets 

Y~I = ~ e0 ~2 (5a) 

Y~2 = ~ s0 ~I (5b) 

where y = 1-r 

Equations (6) have a solution ~I = ~2 = 0 corresponding to no oscilla- 

tion. A non zero solution can be found : 

- Y 2 
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if the input field l~in I satisfies the threshold condition l~in I > ¥/~ 

the solution for the mean pump field is : 

[0 - 7 (7) 

Now, our purpose is to calculate the fluctuation spectrum of the in- 

tensity difference I between the two signal fields. In order to determi- 

ne the field fluctuations we will use a semi-classical approach. We li- 

nearize the classical equations in the vicinity of the above solution 

for modes e. (~) detuned by ~ from the oscillating modes. Furthermore 
i 

we consider that these modes are driven by the vacuum fluctuations ente- 

ring the cavity through the coupling mirror. 

Above threshold the intensity fluctuations are proportional to the 

amplitude fluctuations. We thus have to compute the noise spectrum of 

the variable 

~(e) : ~1(e) - ~2(e) 
(8) 

From Eqs (3) and (4) we obtain the equations giving ~(e) 

a(e) (e -ieT * tin 
-1 +7) : - ~  ~0 ~ ( - e )  + (e) (9a) 

* (-e) - t~ °ut a(e) (e -ieT -I -7) = -6 [0 ~ (~) (9b) 

in out 
where T = L/c is the cavity round trip time and ~ and ~ are the in- 

put and output fluctuations corresponding to the quantity ~. Let us note 

that the fluctuations of ~ are not coupled to the pump fluctuations due 

to the fact that ~1 = ~2" Solving the set of the linear equations (9) 

and their complex conjugates, leads to the following expressJ0n for the 

output fluctuations 

(zout(~) + douti_~) = _ e -icy - I (din(u) + ~in~-e)) (10) 
- iw7 

e -I + 27 

the spectrum of the intensity difference is proportional to : 

S I (10) ~ [12 l e °ut(e) + d°ut]-~l) 

Using Eq(10), we finally obtain : 

T 2 

SI(:#) : S O (I - I+R 2 - 2R coseT 

z (11)  

(12) 
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where R : r 2 = I-2 7 and T = t 2 are the intensity reflection and trans- 

mission coefficients of the coupling mirrors and S 0 is the usual shot 

noise. 

Eq. (12) clearly shows that photon noise is completely suppressed for 

= 0. Suppression remains effective for frequencies m inside the Airy 

peaks, that is for frequencies inside the cavity bandwidth (~c~(I-R)/T) 

This can be well understood by recalling that the photons are emitted 

by correlated pairs, but that the pair correlation is degraded by the 

cavity : the intensities 11 and 12 on the two detectors are expected to 

be nearly equal only when measured during a time longer than the cavi- 

ty storage time I/w c. 

This physical interpretation can be justified by a simple model whe- 

re the field is described in terms of photons only. The key assumption 

of such a model is that the two photons of a pair are emitted simulta- 

neously, but at random times. The mean rate of pair emission is denoted 

E. When a photon hits the cavity coupling mirror, it has the probabili- 

ty R for being reflected, the probability T for being transmitted 

(R+T = I). For a given pair of photons, the difference I of the intensi- 

ties 11 and 12 detected by two photodetectors at time t is given by 

I(t) = d(t- (t0+miT)) - 6(t - (t0+m2T)) (13) 

where t 0 is the first possible detection time and m I and m 2 are the num- 

bers of round trips of photon I and 2 before they exit the cavity. The 

contribution of this pair emission to the Fourier transform II (~)I 2 is 

II(~) I 2 = lexp(-im(to+mIT) - exp(-i~(t0+m2T)) I 2 

= 2(1-cos((m 1-m 2)~T) ) (13) 

The emission spectrum SI(~) is obtained by averaglng (13) over the con- 

tributions of the various pair emissions : 

I 2 
SI(~) : ~ < II(~) I > (14) 

where the integration time At is much longer than any other characteris- 

tic time. Noting that each pair contribution has to be weighted by the 

probability TRml TRm2 that photons I and 2 undergo respectively m I and 

m 2 reflections we get : 
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1 Z TRml TRm2 (I - cos(ml-m2)~T) 
S I (m) = ~-{ E At m1'm2 

T 2 
= 2E(I - ) 

I + R 2 - 2R coswT (15) 

We see that by a mere corpuscular approach we recover the preceding re- 

sult that photon noise is reduced inside the Airy peaks of the cavity. 

The latter calculation is also valid for a low finesse cavity, whereas 

a high reflection coefficient had been assumed in the preceding calcula- 

tion. 

On the other hand, let us stress that the semi-classical calculation 

allows one to derive the fluctuations of other characteristics of the 

fields (10) and in particular to show that the sum of the phases of the 

twin beams is squeezed. But dealing with quantum fluctuations by a se- 

mi-classical method could seem questionable. However, we can first re- 

mark that it gives the right results below threshold : we have checked 

that we obtain the same results by using the standard quantum methods 

(11) for our two-mode-OPO assuming the case of "ideal noise" (12) . On the 

other hand, well above threshold, it is well known that the mean quan- 

tum fields are adequately given by the classical equations, and that 

the quantum fluctuations have very small relative amplitudes. The linea- 

rized classical equations are also very frequently used to describe the 

dynamics of the fluctuations (cf. stability analysis). When the vacuum 

fluctuations are the only source of noise, our method seems to be a qui- 

te natural one. In addition the semi-classical calculation and the pho- 

ton pair model are in remarkable agreement for the fluctuations of I1-I 2 

with fully quantum calculations above threshold (13) (14). 

III. EXPERIMENT 

Experimental set-up 

The experimental set-up is sketched in Fig. 3. The optical parametric 

oscillator is pumped by the 528 nm line of a single mode Ar + laser, sta- 

bilized on an external Fabry-Perot cavity. The non-linear medium is a 

7 mm KTP crystal, which is used in a type IX phase matching configura- 

tion : the green pump beam propagates along an extraordinary ray and is 

phase matched with an ordinary and an extraordinary beam at the infra- 

red frequencies, with incident and output angles close to zero. The KTP 

crystal is inserted in a 3 cm long cavity, closed by mirrors having a 

2 cm radius of curvature. The input mirror has a high transmission for 
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the green light and a maximum reflectivity for the infrared. The out- 

put mirror has a 1% transmission for the infrared light and also a 

high transmission for the green light, An acousto-optic modulator ser- 

ving as an optical isolator prevents the light back-reflected by the 

cavity from interacting with the Ar + laser. 

laser stabilization loop 

~ ~  op[icalNrametric polarizing 
} oscillator prism ,~ 

I .... I_ b n _  ,_ . , . n "  ........ pol 
/ t - "  .l l - V "  ~L--'~ i- N~ 'V  " 1 

~ Ig8 ase opt I lsotator Filter .^ t Arl r + p d Z  | 

]~" t ~ - ~ ~  "~ p0we r c0mbin e c ~ . . j  . . . .  

Pi ure 3: Experimental set-u sp~rum" --J---,~ 

A b o v e  a pump t h r e s h o l d  p o w e r  o f  a b o u t  100 mW, t h e  s y s t e m  o s c i l l a t e s  

a n d  t w o  c o - p r o p a g a t i n g  c r o s s - p o l a r i z e d  b e a m s  w i t h  w a v e l e n g t h s  c l o s e  t o  

3 . 0 6  ~ a r e  e m i t t e d .  T h e  c r y s t a l  i s  c u t  f o r  e x a c t  p h a s e  m a t c h i n g  a t  0 ° 

i n c i d e n c e  b e t w e e n  t w o  w a v e s  a t  1 . 0 6 4  ~m a n d  o n e  w a v e  a t  0 . 5 3 2  ~m ( f o r  

t h e  p u r p o s e  o f  YAG l a s e r s  d o u b l i n g ) ;  t h e  p h a s e  m a t c h i n g  c o n d i t i o n s  f o r  

0 ° i n c i d e n c e  f o r  p u m p i n g  a t  528  mm g i v e  e m i s s i o n  o f  t w i n  b e a m s  a t  1 . 0 6 7  

~m a n d  1 . 0 4 8  ~m r e s p e c t i v e l y .  T h e  s t r a y  i n f r a r e d  b e a m  e m i t t e d  i n  t h e  

b a c k w a r d  d i r e c t i o n  t h r o u g h  t h e  h i g h  r e f l e c t i v i t y  m i r r o r  i s  u s e d  t o  s t a -  

b i l i z e  t h e  c a v i t y  l e n g t h  f o r  m a x i m u m  p a r a m e t r i c  e m i s s i o n .  I n  t h e  f o r -  

w a r d  d i r e c t i o n ,  a f i l t e r  b l o c k s  t h e  p u m p  b e a m  a n d  t h e  t w o  i n f r a r e d  

beams are separated with a polarizing beam-splitter and focused on two 

InGaAs photodiodes having a quantum efficiency of 0.9 at 1.06 #, All 

the optical elements located after the output of the cavity are anti- 

reflection coated for the infrared light. The two photocurrents are am- 

plified by low noise 40 dB amplifiers and subtracted by a i80 ° power 

combiner. The difference signal is monitored with a spectrum analyser. 

The interest of type II phase matching is that the twin photons are 

distinguished by their polarizations even if their freauencies are equal 

or very close to each other ; this enables us to easily monitor the dif- 

ference intensity of the twin beams, and its noise spectrum which is ex- 

pected to be below the quantum noise. 



68 

Expected signal 

As exposed above, the various theoretical models predict a reduction of 

noise below shot noise in a frequency band which is the frequency pass- 

band of the cavity. The noise should be completely suppressed near the 

zero frequency. However, this result has been obtained by assuming that 

the only loss mechanism comes from the coupling mirror. Actually other 

losses have to be taken into account. Absorption and stray reflections 

on the two faces of the crystal will be represented (Fig. 4) by los- 

ses coefficients R I and R 2 (T I : I-RI, T 2 = I-R2) . The quantum efficien- 

cy of the detection will be accounted for by a transmission coefficient 

T 3 • 
R 2 • T z R I T I 

, i R,T 
T 3 

~etector~ 

Figure 4 

With these assumptions, the probability for one photon to undergo 0 

reflection and be detected is T I T T 3. The probability for one photon 

to undergo m reflections andbe detected is T I T T 3 (RT2TI)m. Inspection 

of the various possible events at the detectors leads to the following 

result: 

= 2E [~ TIT3T (RT2TI)m SI(~) 

- Z TIT3T (RT2T1)m] T1T3T (RT2T1)m2 cos(ml-m2)~T ] 
ml,m 2 

[I 2 ] = 2Eq _ rl (I-R,) 
I+R 2-2R'cos~T 

where R' : RTIT 2 is the effective reflection coefficient of the cavity 

and 
TTIT 3 

q : I_RTIT 2 
is the effective detection efficiency 

The shot noise suppression is thus degraded by a factor q. 

With T 3 = 0.90, RI=R 2 = 0.005, I-T=R = 0.99 

one gets 
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= 0.45 

Even with losses in the cavity which amount to about half the trans- 

mission of the coupling mirror, a sizeable reduction of the quantum 

noise should be observed. 

IV. CONCLUSION 

Such highly correlated intense beams could have applications in very 

various demains : first, it may enhance the sensitivity of absorption 

measurements (15) : if one inserts an absorption cell on one arm and 

scans the frequency around an absorption frequency, the signal-to-noise 

ratio of the absorption dip recorded on the signal 11 - 12 is no longer 

shot noise limited. Second, in a way analogous to ref. (16) , one can 

monitor the 11 intensity only and use this signal to react on 12 (or 

on the pump intensity). This would provide an intensity squeezed laser 

like beam, i.e. an approximation of a Fock state IN>, which has so 

far never been obtained in the laboratory. 
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The competition between transitions in a driven three-level atom 

generates interesting dynamical correlations in the radiated 

electromagnetic field. We first review the problem of a three-level 

atom in a high-Q cavity excited by a quantised radiation field. We 

examine the phase sensitivity and squeeming properties of this 

two-photon system. We then discuss the quantum fluctuations in the 

fields radiated by a three-level atom in free-space and show how the 

three-level dynamics modify the phase-sensitive squeezing in the 

fluorescence. Intensity correlations between the emitted photons are 

studied and evidence for quantum jumps in the three-level dynamics 

examined. The description of sequential photoemission correlations 

usin6 probability amplitudes is compared with Bloch equation 

treatments based on the quantum regression theorem. 
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I~_~T~ODUCTIO~ 

In this paper we examine some of the fundamental processes by 

which three-level atoms can radiate light with manifestly quantum 

properties. These atoms have three energy levels, one of which is 

coupled to both of the others by electric dipole transitions. Three 

level-configurations are possible. The "ladder"-configuration has the 

ground state coupled to the most excited state via an intermediate 

third level. The "lambda"-configuration has two lower energy states, 

both of which are coupled to a common excited state. Finally, the 

"vee"-configuration has two excited states both of which are coupled 

to a common ground state. 

In section two we consider the production of squeezed 

superposition states by the resonant interaction of a three-level atom 

in a ladder-configuration with one or two cavity modes [i]. In section 

three we discuss the possibility of squeezing by resonance 

fluorescence from a driven three-level atom in a lambda-configuration 

[2]. Finally, in section four we consider the quantum jumps and 

intensity correlations in fluorescence from a driven three-level atom 

in a vee-eonfiguration [3]. 

2~_CAVITYFIgLD SQUEEZING:THREE-LEVEL JAYNESzCHMMIN~S MODEL 

The intra-cavity spontaneous emission from a specially prepared 

two or three-level atom can generate field states that are a 

superposition of the vacuum and the one- or two- photon states [1,4]. 

These states can exhibit squeezing, that is fluctuations in one 

quadrature of the electric field that are reduced below the level 

associated with the vacuum [5]. These superposition states are 

fundamentally different from the usual squeezed or two-photon coherent 

states in that they are not minimum uncertainty states of the 

uncertainty relation 
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Aa, Aazli/4 

where a I and a 2 are the hermitian quadratures of the annihilation 

operator (a=~+ia2). 

We consider a three-level atom with states ~I>, 12> and 13> in a 

ladder configuration resonantly excited by a quantized field 

consisting of one or two cavity modes. We imagine the cavity Q-factor 

to be sufficiently high that dissipative interactions may be 

neglected, and ignore temperature-dependent thermal effects. Such a 

system is experimentally approachable in the Eydberg atom maser [6,7]. 

We will demonstrate that a suitably-prepared atom interacting with a 

single cavity mode generates a maximally-squeezed two-photon 

superposition state, whereas if a pair of field modes is involved, 

multimode squeezing in superpositions of the modes is generated by the 

(reversible) spontaneous emission [I]. 

For a single-mode interaction, we take as our Hamiltonian the 

rotating-wave (RWA), interaction picture form 

H--~{a*(g! 11><2[+ gz12><31) 

~(gl 12><I~ +g2 13><21 )a} (2.1) 

where the coupling constants g1' gz are taken as real. The three-level 

atom is prepared in a linear superposition of the ground, and 

uppermost states 

[A( t=O)>=cos (O/2 ) ]3>+  e x p ( i ~ ) s i n ( O / 2 ) [ l >  ( 2 . 2 )  

by coherent excitation with suitably chosen fields prior to t=O. The 

initial atom-field state is a product of the atomic superposition 

state and the vacuum field 
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I~(t=O)> = IA(t=O)>lO~>. 

The Hamiltonian (2. i) couples the atom-field state 

(2.3) 

~3> I0~> to the 

states ~2>~I~> and il>12g> but in RWA the state ll>IO~> is uncoupled. 

At time t, the interaction picture wavefunction is then 

~( t )>=cos(O/2) {Cz( t )13> |O{>  + Cz(t )  12> l I~>+Cl ( t ) l l> }2~>}  

+exp(i~) ~ i ~  (8/2) It> lo~>. (2.4) 

The time-dependent Schrbdinger equation gives for the state amplitudes 

• co  tl/c24+g l C3(t)=[2g1÷g z (2.5) 

Cz(t)=-i(g2/~)sin~t 

Ct(t)=~(glg2/91%)(eos~t-l) 

(2 .6 )  

( 2 . 7 )  

is the effective Rabi frequency, hiR __2g~+g;. :n , ~ If ~291--g2, then where~ 

the dynamics simply reflects the periodic interchange of two quanta 

between atom and field. After half a period, when cos[~ t=-l, the 

system is in the state 

I~>= 11>{exp(iq~) sin(8/2 )l of >-cos(~/2) 12~ >} (2.8) 

which is a product of a pure two-photon superposition state and the 

atomic ground state. The system is in this state periodically, and at 

these times the field exhibits squeezing. If we choose the phase ~ to 

be zero then at these times, the variance in the a| quadrature is 

I (i+4cos2(0/2) - 2~cos(~/2)sin(~/2)) 
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which is clearly squeezed if ~cos(8/2)-sin(@/2) is less than zero. 

Here the smallest possible variance in a I is 

(~a~)2=(I/4)(3-F)=O. 13763, corresponding to about 45% squeezing below 

the standard quantum limit. 

When the three-level atom is excited by two quantimed field modes 

the RWA interaction picture Hamiltonian is 

H---'~{g 1 (b ~ ]1><21+ 12><II b)+gz(a~12><3 I+13><21a)}. (2.9) 

Two-mode squeezed states are superpositions of photon states in which 

both modes contain the same number of excitations. The simplest is the 

superposition of the two-mode vacuum state and that in which each mode 

contains a single photon. Such a state is generated from the two-mode 

vacuum by an atom prepared in the superposition state eq,(2.2): 

I~(t=O)>=IA(t=O)>lOm>lOB> (2.10) 

where a,b denote field modes. Now H couples ~3>I0m>I05> to the states 

12> ~i~> ~05> and ]i> ~I~> ~15>. The zero-quantum state Ii> I%> I05> does 

not evolve. At time t, the wavefunction is 

l~(t) >=0os(8/2) {C2(t) 12> I1a> lOb>+Cs(t) 1 3> I0¢> (OB> 

+c 1(t) if> 11o> ll~>} 

+exp(i~)sin(~/2) If> lOa> IOb>. ( 2 . 1 1 )  

Again, solution of the Schr6dinger equation for the probability 

amplitudes ~(t) is simple and gives 

C~(t)=[g~+g~co~Rt]/ft ~ 

Cz(t)=-i(gz/~)sinQt 

CI(t)=(g I g2/%~Z)(cos~t-l) 

( 2 . 1 2 )  

(2.13) 

(2.14) 
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where~ is the effective Rabi frequency'2 Z 2 =g1+gz. These simplify now 

if ~ =g2 so that again two quanta are periodically exchanged, one into 

each of the two modes. When cos~t=-l, we have 

~(t=~/~l) >= II>{-cos(~)/2) llm > ll~>+exp(~¢)sin(~)/2) IOa > IO&>} (2.15) 

a product of the atomic ground state and a pure state of the two-mode 

f~eld. This pure state is related to the thermofield [8] or two-mode 

squeezed state, generated by the squeeze operator 

4 S(~)=exp(~ab-~a b I ). (2.16) 

The mu]timode squeezed states are superpositions only of those states 

in which both modes contain the same number of photons. The strong 

correlation between the modes generates enhanced Bose-Einstein 

fluctuations in each single mode but squeezing in mode superpositions. 

The density matrix for the a-mode is found by tracing the field 

density matrix over the b-mode: 

~=oos '(~12) 1 la><lal +sin" (~12) l 02 <0.| (2.17) 

is a statistical mixture of one and zero photons. There is no 

phase-information and the quadrature operators exhibit enhanced rather 

than squeezed fluctuations 

(Aa1~ =$(I l+2cos2(@/2))=(~a z)2 (2.18) 

A similar result holds for the b-mode. 
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F i g .  l :  The evolution of the variances in the a| and a2 (-----) 

and b I and b 2 ( 0 quadratures for the three-level, 

two-mode JCM with ~=3W/4. The fluctuations in these modes 

are phase-insensitive and do not exhibit squeezing. 

The two fluctuating modes are nevertheless tightly correlated. We 

introduce superposition modes with annihilation operators 

~=(a-exp(ig)b)/~ 

~=(b+exp(-i~)a)/~ 

In terms of these superposition mode number states, 

wavefunotion in eq.(2.15) has the form 

IF>=exp(i~) sin(@/2> IOa> 10b> 

+~cos(O/2){exp(i~) [2a> loi>-exp(-iE) 10~> 12~>} 

<2.19) 

(2.20) 

the two-mode field 

( 2 . 2 1 )  

This state would be the product of two single-mode superpositions of 

the two-photon type except that the oontribution from 12~>~2~> is 

absent. The individual superposition modes are not in pure states and 
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Fig.2:The evolution of the superposition mode variances in 

the ~1(dashed) and ~2(solid line) quadratures for the 

three-level, two mode JCM with ~=3~/4. With this choice of 

phases the ~I quadrature exhibits squeezed fluctuations that 

may be reduced by up to 40% below the standard quantum 

limit. 

mixed state effects degrade the squeezing. We define the in-phase 

quadrature operator 

WI=(I/2)(~+~ ) (2.22) 

to generate a variance 

(Aal)2 =(i/4) ( l+2cos 2 (0/2) +sin0cos (g -~)) (2.23) 

If ~-~=N, the variance is 

(A~)~=(I/4)+(I/4)(l+cos$-sing) (2.24) 

which is squeezed if (sin~-cos~)>l. The minimum variance in ~I is 

if the atom is prepared initially with cos~=-i/~aud sin~ produced 
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=ll~, and i s  (A% )2 =( I/4) (2-~)~0. 14645, corresponding to 40% 

squeezing, marginally less than the squeezing associated with 

single-mode pure superpositions (each of the superpositions ~, ~ are 

put into mixed states by tracing over the other superposition mode). 

3.__~EE~!IG IN FREE,SPACE FLUQ~ESCENCE~Q~~L ATOMS 

Walls and Zoller [9] predicted squeezing in resonance 

fluorescence from a sing]e two-level atom interacting with a coherent 

field. Three-level lambda systems were suggested as a source of 

squeezing because, although nonlinear interactions are present, 

negligible upper level population is produced on two-photon resonance 

because of population trapping [I0]. We have analyzed the squeezing 

properties of lambda system fluorescence excited by two coherent 

fields [2]. We consider the level scheme shown in Fig. 3: 

1i ~o i ~ 

0Ji  , ,  .... 
3 : T h r e e - l e v e l  a tom e n e r g y  l e v e l s .  R e l a x a t i o n  r a t e s  F i t .  

and q f rom t h e  e x c i t e d  s t a t e  ~1> t o  t h e  g r o u n d  s t a t e s  I0> 

and J2> a r e  shown, t o g e t h e r  w i t h  g r o u n d  s t a t e  r e l a x a t i o n  

rates [~02 and ~0 

The atom, in level ~0> interacts with two single-mode laser 
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fields a,b of angular frequencies (~a' ~' polarizations E a, ~Bwhich are 

initially in coherent states lO(a>, I(~b>, (~c(C=a,b)=(Ec) I19" where ~c is 

the mean photon number. We write the laser fields in terms of positive 

( E ~ ,C) and negative (E~) frequency components 

"~ E~)g c (3  i) ~j(E + _ 

and these induce Rabi frequencies 
-- II~ 1t2 

where V is the quantisation volume and ~_ the dipole operator. We 

introduce the quadrature operators 

"~ exp(iGYct)+ Ej exp(-i&Y~t) ( 3 . 3 )  Etc =E c 

EXc =-i[Ecexp( iur~t)-E~exp(-i~/~ t) ] (3.4) 

SO that the fields are 

E c =EIc cos~t+Ezc sin &yet. (3.5) 

We choose in this section to calculate normally-ordered field 

variances. The fluorescent dipole source fields are given in terms of 

the atomic dipole raising and lowering operators ll><Ol and I0><1[ by 

[11] 

E~= ,~,,li > <ol 

(~ I0><11 EQ= 
where 

d2- ~ eoC21< 
and similarly for the 1-2 transition. 

distance. The normal-ordered variances are [12] 

5~<:  (a~.,a ~:>/,[ :[ 2 p,( t >-c 2~e~. ( t > ~ I 

and  

F =--<:(~E2a )%:>/,~=[2~ (t)-[2 Im~1(t)]z] 

( 3 . 6 )  

( 3 . 7 )  

( 3 . 8 )  

Here R is the atom-detector 

( 3 . 9 )  

(3.10) 

Squeezing occurs in the fluorescent field if F1a or F2a is negative. 

These variances are determined by the density-matrix elements ~I (t) 

and ~1(t) which obey the three-level Bloch equations [13,14]. We solve 
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these by matrix methods in terms of the eigenvalues and eigenvectors 

[15]. 

The steady-state variances are found to be strongly-dependent on 

the ground state relaxation rates ~2 and ~0 " We can determine the 

s t e a d y - s t a t e  (t'') q u a n t i t i e s  ~ a  'F~a' Re£, and Imp, a n d A  . These 

are plotted in Fig.4 as a function of the two-photon detuning~. A 

negative (squeezed) variance FIg is produced 

0.20/~ 

-1. O0 
/ 

I-- 

J 

-0.20 
Fig.4:Dependence of the three-level atom fluorescence 

variables on the normalized two-photon detuning 

=(I/2)(~a+~b) for ~=~. The solid line is the 

excited state population; the real part of~1 is dashed, the 

imaginary part dash-dot; the variance FIG is and F2a 

is ..... The Rabi frequencies are chosen to be 

%=0 2(q We set and 

2 =0. 

near two-photon resonance, whereas a squeezed variance F2a is produced 

in the wings of the lineshape. The squee2ing, we show below, is 

entirely due to the lower-state relaxation creating essentially a 

two-level system from the three-level atom. 

set the lower state relaxations ~0 and ~2 equal to Had we zero, 

no steady-state squeezing is produced: population trapping eliminates 

one-photon coherences [2]. To second-order in the two-photon detuning 
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~, we find for the purely radiatively-damped three-level atom 

~ =[ ( 4a/~l)sin2¢] ~ (3. Ii) 

F~ = [ ( 4~/~I ) s in2¢ cos¢] z ( 3.12 ) 

where 

=tan'J(-~L/~Q) (3.13) 

and the two-photon Rabi frequency~ is given by 

511 • 2 =(~e+~b). (3.14) 
The lower state relaxation unbalances the symmetry between ground 

states to prevent complete destructive interference between the two 

excitation channels. We find in steady-state, that Fla is negative for 

6/(~ +~) between -1/2 and +1/2, and F2Q is negative outside this 

interval, The amount of squeezing increases as %0 increases. As %0 

increases, the state 2 population is slaved to return to state 0 

rapidly and plays no role in the dynamics, so that the three-level 

system reduces to a two-level system. For this effective two-level 

system 

2 , r~ ~ /(2~+4~+~'): =2~a(2Sm+4ba-¢ ) - -- (3.15) 

where'= ~+% and ~ is the 0-i one-photon detuning. Similar results 

have been obtained for squeezing in two-level resonance fluorescence 

[ 9 ] .  they gi e o.  o v 4  and 0 . 0 6 3  i n  

agreement with Fig. 4. 

Transient squeezing can also be generated by the three-level 

lambda system. We have studied this [2] using dressed atom or 

uncoupled state [16] representations to calculate the time-dependent 

density matrix elements. In Fig.5 we plot FIg and F2Q versus time 

with ~ = ~ and we put ~Z =0; the lasers are tuned to resonance 

(~=0=85) a n d  we have ohosen~/(q+g)=200,~ =-3a/8 (corresponding to 

~/(q+%)z76 and ~b/(q+q)=185). Note that Fig is squeezed for almost 

all times 
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/ 

O. 30 

-0.20 

Fig. 5:Transient resonant evolution of variances 

FIg (upper) and Fza(lower) plotted against (q+~)t for large 

Rabi frequencies (see text) such that (~gz+~),,l=200(q+~) 

in this transient regime, with a slow decay of the oscillations around 

a finite value. The long-time values of F1a and FZ~ decay to zero [2] 

as discussed above. 

4,QUANTUM JUMPS AND CORRELAT,IONS IN,,,,,THREE=LEVELFLUORESCENCE 

So far we have concentrated on the nonclassical squeezing of 

quadrature variances in light emitted by three-level atoms. The 

intensity correlations are also of interest in studies of three-level 

atoms. Quantum jumps in the fluorescence from three-level V-systems 

have attracted much theoretical [17] and experimental [18] interest. 

Here we examine the optical correlations in the light emitted by a 

V-system (Fig. 6) in which a strongly-allowed transition competes with 

weak excitation to a metastable state |2). We will describe 

the intensity correlations for two cases:purely incoherent excitation 

using Einstein rate equations and coherent excitation using dressed 

atom methods. 
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................. 

Fig.6:Three-level V-system in which a strongly-allowed 

(and rapidly decaying) transition competes with weak 

excitation to a metastable state 2 with small decay rate A 2. 

The intensity correlations and the degree of second-order 

coherence for laser-driven atomic fluorescence is normally calculated 

using the quantum regression theorem [ii]. Here we use instead the 

delay function method developed by Cohen-Tannoudji and Dalibard to 

describe sequential emission of photons. Let w~(~) be the probability 

density for an interval~ between one photon and the next, normalized 

so that 

wz(~ )d~ =i (4.1) 

The probability P(~) of no further photon to be emitted within I of 

the first emission at time 0 is 

P(~ )=i- w2 (~')d~[ (4.2) 

The probability that any photon is emitted between times~ and T+d~ 

after one is emitted at time 0 is Q(~)dT, given by 
t 

Q(t)=w~(t)+ ~2(~)wz(t-T)d~ , (4.3) 

The Glauber second-order coherence function g(Z)(~) gives the 

normalized correlation function for the joint detection of a photon at 

time 0 followed by any other (not necessarily the next) at time ~ and 

is given in terms of Q(~) by 

gl~)=Q(~)/Q(~). (4.4) 



85 

For incoherent excitation of the V-system, we may be interested 

in correlating emission from 1 to 0 and from 2 to 0 with each other. 

We label the i-0 and 2-0 transition photons as i and 2, and the degree 

of second-order coherence g(2)(%)., gives the normalized correlation of 
t~ 

photons of type i. If i=l, we are interested in the strongly-allowed 

f]uorescenee and its correlation through g1~ (Z)" The rate equations 

for the population densities in states O, 1 and 2 are 

(4.6) 

(4.7) 

where a=At+B4W I , b=BIW I, q=A=+BzW 2 and s=BzWz; and A and B are 

Einstein A and B coefficients, with W. (i=1,2) the energy density of 
t 

(z) 
radiation exciting the 0-I and 0-2 transitions. In calculating g~4 (~) 

we have assumed that spontaneous emission from level ~i> does not 

repopulate level ~O> but that spontaneous emission from ~2> does 

repopulate IO>. This technique allows us to keep track of sequential 

photon emissions from the i-O transition and to calculate the w2(T) 

function. We can write the probability density wz(%) in terms of the 

probability of remaining in the atom-field dressed state manifold 

without emitting a photon: 

We write the general eq. (4.3) in Laplace-transform space 

Q(z)= wZ(z)/(l-~(z) ) 

where ~(z)=~(Q(~)) and ~,(z)=[(Wz(T)). We find 

(4.8) 

(4 .9 )  

(4 .10 )  
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where ~ =T/2 Z [T2-4(aq+bq+as)] I~ and T=-(a+b+q+s). In the experimental 

studies of quantum jumps and the observation of fluorescent two-state 

telegraphs [18], the metastable state was exceedingly long-lived, so 

that AI>>A 2 and BIW|>>B2H 2. In this case we find from eq.(4.10) and 

eq.(4.4) A• A,T 

, e + e 

(4.11) 

/ 

1 2 3 4 5 6 7 8 

(2) 
Fig.7:The degree of second-order coherence g11 (T) versus 

inA$ from eq.(4.11) for incoherent excitation with AI=I/2, 

BIWI=I, A2=l. OxlO'~ and BIWz=I.0xlO-~. 

where ~-(2BIW I +A I t +iB~W 2) and ~_~-((3B2Wz/2)+Az). This result agrees 

with that obtained earlier using the quantum regression theorem [3]. 

This is shown in Fig.7. We note that at short times the correlation 

function is that of 

the dominant two-level part of the dynamics and exhibits antibunehing 

but that at larger times there is a sudden drop as the metastable 
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transitions (the "jumps") play a role. The "excess" correlations 

represented by the hump visible in Fig.(7) are the signature of a 

telegraph signal. A regular classical square wave telegraph [ii] would 

generate a regular triangular g(2)(y). Here, a distribution of "on" and 

"off" times smooths the correlation and quantum effects are 

responsible for the initial antibunching. 

When the atom is driven by two coherent laser fields, of which 

one is resonant to the transition frequency of the strong transition 

]0>-~ ~I> and the other is detuned to that of the weak transition, ~2, 

~0>~ ~2>, the dynamics of the atom can be described by the following 

equations of motion. 

=  cqG 
(4.12) 

~ CI -- "~I Co-~I CI (4.13) 

8 {  z 

where C O and C are the probability amplitudes of states ~0> and ~I> 

respectively and ~=C~exp(i/kzt) is used instead of the probability 

amplitude C z of state ~2>, in order to remove the fast oscillatory 

factor. The Rabi frequencies ~I and QZ drive the transitions ~O>~Ii> 

and ~O>~[2> respectively. The damping factors ~I and ~Z are one half 

of the Einstein A coefficients for the state Ii> and 12>. Solving the 

equations of motion and approximating the solutions under the 

conditions ~I,,~ I >>~Z,~2,Cohen-Tannoudji and Dalibard [19] have shown 

that 

-2 2 2 -~ ' "2r  

where 

]h: ~ (4.16) 

(4.15) 
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z o I ~  A z 

and ~ is the real part of R s. The first term in the probability 

function P(T) is that of the two-level atom dynamics and the second 

term is due to the presence of the metastable state 12>. Using the 

general relation eq. (4.9) and wz(x)=-dP/d~ we get the probability 

function 

~(z)=l-z~(z) (4, 19) 

= '&a~ z * 2%qI ? 
z[z~. cz%. ~r)z'÷ t2~,'.al)z* zr ( z ~ . a l ) *  ~=~'~,' g, 

where we have again used the assumption that the atom is in the ground 

state at delay time• =0. Thus the degree of second order coherence is 

given by 

~.'~" 0 (4.20) 

The degree of second order coherence described above differs from 
{=) 

the normal degree of second order coherence g4i (~), since it gives the 

relation between one photon and any other photon of any kind (whether 

from the i-0 or 2-0 transition) However it is very unlikely we will 

get a fluorescence photon due to the t 2>~t0> transition and there is a 

very slim chance to have a consecutive ~0>~[2> transition. Thus Jt1(~) 

{2) 
will not be very different from g~(%). 

To find the degree of second order coherence using the quantum 

regression theorem, involves 9th order polynomials,and 9 differential 

equations must be solved [20]. In contrast by using the Q(I~) function 
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2 

- 2  - 1  0 1 2 3 4 5 

Fig. 8:The degree of second-order coherence g~(T) for 

coherent excitation versus ln~, when ~,=5, ~i=I,~2 =ixl0 

and~=IxlO "Z. The dotted line is plotted for a zero 

detuning; the solid line is calculated for ~z=Q~/2. 

6 

we can find g;1 (~) without any major difficulties. 

The degree of second order coherence is plotted in Fig. 8. When 

the delay time is small, we have Rabi oscillations at frequency ~I' 

and antibunching at short times. At long times we again see a plateau 

before the metastable state makes its contribution felt but only if 

the probe laser is tuned to an a.c. Stark shifted level. The presence 

of quantum jumps depend here upon the details of the coherent 

excitation. 

Bo~nowle__ddg~nts. 

This work was supported in part by the U.K. Seienee and 

Engineering Research Council, the Brazilian CNPq, the Royal 



90 

Society (through a Guest Research Fellowship for K.W,) and the British 

Council. We would like to thank Profs. R. Loudon and D.T.Pegg and 

Dr.J.Dalibard for discussions. 

~efgre~s 

[l]K. W6dkiewicz, P.L.Knight, S.J.Buckle, and S.M.Barnett, Phys. Rev. A, 

in press(1987) 

[2]F.A.M. de Oliveira, B.J.Dalton and P.L. Knight, submitted to 

J.Opt. Soc. Am.B (1987) 

[3]D.T.Pegg, R.Loudon and P.L.Knight, Phys. Rev. A 33,4085 (1986) and 

references therein. 

[4]P.L.Knight, Physica Scripta T12,51 (1986) 

[5]D.F.Walls, Nature 306,141 (1983) and refrences therein. 

[6]P.Filipowicz, P.Meystre, G.Rempe and H.Walther, Optica Acta 32,1105 

(1985) 

[7]S.Haroche, "New Trends In Atomic Physics" ed.G,Grynberg and R. Stora 

(Elsevier Science Publishers BV, 1984) 

[8]S.M.Barnett and P.L.Knight, J.Opt. Soc. Am. B2,467 (1985) 

[9]D.F.Walls and P.Zoller, Phys. Rev. Lett 47,709 (1981) 

[10]M.D. Reid, D.F. Walls and B.J. Dalton, Phys. Rev. Lett 55,1288 (1985) 

[11]R. Loudon, "The Quantum Theory Of Light" second edition (Clarendon 

Press, 1983) 

[12]B.J.Dalton, Physica Scripta, T12,43 (1986) 

[13]B.J.Dalton and F.L. Knight, Opt. Comm 42,411 (1982) 

[14]B.J.Dalton and P.L. Knight, J.Phys. B 15,399 (1982) 

[15]R.M.Whitley and C.R. Stroud Jr. Phys. Rev A14,1498 (1976) 

[18]D.T. Pegg and W.R. MacGillivray, Opt. Comm. 59,113 (1986) 

[17]R.J.Cook and H.J.Kimble, Phys. Rev. Lett. 54,1023 (1985) 

[18]W.Nagourney, J. Sandberg and H.Dehmelt, Phys. Rev. Lett. 56,2727 

(1986); J.C.Bergquist, R.G.Hulet, W.M. Itano and D.J.Wineland, 

Phys. Rev. Lett. 57,1699 (1988); T.Sauter, W. Neuhauser, R. Blatt and 



91 

P,E. Toschek Phys. Rev. Lett. 57,1696 (1986). 

[19]C. Cohen-Tannoudji and J.Dalibard, Europhys. Lett. 

[20]A. Ai-Hilfy and R. Loudon, J.Phys. B 18,3697 (1985) 

1,441 (1986). 



INTERFEROMETRIC DETECTION OF GRAVITATIONAL RADIATION 

AND NONCLASSICAL LIGHT 

Walter Winkler I, Gerhard Wagner I and Gerd Leuchs 1,2 

IMax-Planck-Institut fur Quantenoptik, 

Postfach 1513, D-8046 Garching 

2Sektion Physik der Universitat Munchen 

I. Introduction 

Prototypes of laser interferometric gravitational wave detectors have 

been developed for more than a decade and have now reached a stage 

where large, km-long interferometers are planned in several countries. 

In the first four sections the predictions for sources of 

gravitational radiation and the present detector performance is 

briefly reviewed. The prototype interferometers have essentially 

reached the shot noise limit I) . However, this fundamental limit may be 

overcome using techniques being developed in quantum optics. A 

graphical approach to the noise analysis of the interferometer is 

presented in the last two sections, showing that squeezed states of 

the radiation field may improve the interferometer sensitivity for 

measuring gravitational waves. 

II. Characteristics of Gravitational Waves 

Every mass is associated with a corresponding gravitational field 

surrounding it. Intuitively one would expect, that accelerated masses 

would give rise to the emission of some sort of radiation - analogous 

to the emission of electromagnetic waves by accelerated electrical 

charges. Einstein predicted the existence of gravitational radiation 

already in 1916. Corresponding to his Theory of General Relativity 

gravitational waves are expected to be transversal and to propagate 

with the speed of light like electromagnetic waves. However, there is 

an important difference between electomagnetism and gravitation: the 

sign of electrical charges may be positive or negative, whereas there 

is only one type of mass. As a consequence, there is no gravitational 
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dipole-radiation. This can also be seen from the analogy to the 

expression for the power emitted by an oscillating electro-magnetic 

dipole: 

dElel.mag.dipole ~ ~2 = (~.~.d Svdq)~ (i) 

It is proportional to the square of the second time derivative of the 

dipole-moment p. The time dependent velocity of the charge q is 

denoted by v. The analogous expression for any moving mass 

distribution is the square of the time derivative of the total 

momentum: 

gray. d ipo le  ~ ( ~  = 0 
Owing to conservation of momentum in a closed system this expression 

vanishes. Therefore, in the case of gravitation, the lowest 

nonvanishing order multipole radiation is the quadrupole radiation. 

The emitted power is proportional to the square of the third time 

derivative of the mass-quadrupole-moment: 

dE ~ ~2 
~ l g r a v . q u a d r u p o l e  

/ - . ,  t / /×  

Fig. I: Spatial strain pattern produced by a gravitational wave. 

(2) 

A gravitational wave manifests itself in a variation of the metric of 

spacetime - e.g. in a change of the optical distance between free 

testmasses, which can be monitored by registering the light travel- 

time between these testmasses. The effect of a gravitational wave can 

be described as a time dependent index of refraction of the lightpath; 

another equivalent description introduces a time-dependent strain of 

space, as indicated in Fig. i. 

The quadrupolar characteristics of the gravitational wave can be seen 

from the elliptic deformation of a circular arrangement of free 

testmasses, if the plane of the circle is perpendicular to the 
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direction of propagation of the wave. A positive strain in one 

direction is accompanied by a negative strain in the perpendicular 

direction; half a period later the signs of deformation have changed. 

Fig. 1 shows one of the two independent polarizations of the wave; for 

the second one the pattern is rotated by 45 °. The amplitude h of a 

gravitational wave is given by a dimensionless quantity, the strain of 

space it introduces: 

h = 26t/t 

62/~is the relative change of distance between testparticles, e.g. of 

the axes of the ellipses indicated in Fig. i. Unfortunately the quanti- 

ty h is usually discouragingly small for any measurement in the vicini- 

ty of the earth. In order to get a strong wave Q has to be as large as 

possible according to Eq. (2). This implies, that the masses involved 

have to be accelerated as fast as possible. As simple calculations 

show, gravitational waves of measurable strength cannot be produced in 

a laboratory. Consider for example as a source a metallic cylinder with 

a length of Im and a mass of 1 ton. This cylinder emits gravitational 

radiation, if it rotates around an axis perpendicular to its axis of 

symmetry. The emitted power increases strongly with increasing frequen- 

cy of rotation. Just below the limit of rupture the amplitude h produc- 

ed at a distance of one wavelength of the gravitational wave is only on 

the order of 10 -40 - much too small to be seen by any presently con- 

ceivable detection technique. 

Fortunately astrophysics tells us about scenarios, where huge masses 

are so strongly accelerated, that despite their big distance the 

amplitudes of gravitational waves produced are not totally out of 

reach for experimental access 2) . 

A favourable type of source for gravitational waves are compact 

binaries; these are stellar objects consisting of two neutron stars or 

even black holes. Such objects emit gravitational radiation while 

rotating around their common center of mass. 

The related energy loss leads to a shrinking of the relative distance 

and a corresponding increase in angular frequency. Finally the two 

objects - with masses in the order of a solar mass - are accelerated 

close to the speed of light, and during the following collapse a huge 

amount of energy is emitted in form of gravitational radiation - most 

of it in a time interval shorter than one second. An expected signal 
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of this type is drawn in Fig. 2 indicated as line (a) 3) . 
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Fig. 2: Signal strength of some sources of Gravitational Radiation as 

a function of frequency f. The bandwidth for evaluation of 

the detector-signal was chosen to be equal to f for 

supernovae, and f/n for the n cycles to be observed for 

compact binaries. 

a: compact binary in the center of our galaxy 

a': compact binary in the Virgo-cluster 

b: Supernova in the center of our galaxy 

b': Supernova in the Virgo-cluster 

c: Supernova in the Magellan cloud 

Another conceivable source are supernovae of type II. Under particular 

circumstances they occur at the end of the life of a normal star, when 

the nuclear fuel is used up. The thermal motion of the atoms decreases 

and can no longer balance the gravitational pressure; the inner part 

of the star starts to collapse. The huge amount of energy released 

shoots off the outer shell leading to the well known optical spec- 

tacle. In the center, however, - not to be seen optically from outside 

- a very dense core of strongly accelerating masses develops. Again a 

short, intense pulse of gravitational radiation is likely to be emitt- 

ed, if the collapse takes place asymmetrically. Such an asymmetry will 

usually develop owing to the initial rotation of the stars. A signal 

expected for this type of source is drawn in Fig. 2 as line (b). The 

supernova which occured at the beginning of this conference in the 
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Magellan cloud about 55 kiloparsec away would have produced a pulse 

with Fourier components along line (c), if we assume that the emitted 

energy was 10 -3 of a solar mass. The signals a and b are expected to 

be produced by events in our galaxy - but most likely the event rate 

will be low, only a few per century. The Virgo cluster, however, con- 

tains a few thousand galaxies, leading to a correspondingly higher 

event rate - but the signal strength will be much lower due to the one 

thousand times larger distance (signals a'and b'). From Fig. 2 one can 

deduce, that it would be most desirable to get strain sensitivities on 

the order of 10 -21 for the detectors of gravitational radiation. 

III. Detectors for Gravitational Radiation. 

When Einstein first introduced the concept of gravitational waves, no- 

body dared to attempt an experimental verification for decades because 

the effect is discouragingly small. Nevertheless, in the sixties 

Joseph Weber of the University of Maryland started his pioneering work 

developing resonance detectors. The basic element of his antenna was 

an aluminum bar with dimensions on the order of one meter and a mass 

of more than a thousand kilograms. The spatial strain introduced by 

gravitational waves should couple to the longitudinal fundamental mode 

of the bar and change the state of oscillation of the bar, if the as- 

sumed shortpulse excitation had Fourier components at the fundamental 

eigenfrequency. The motion of the bar was sensed with piezocrystals 

attached to its surface. Based on Weber's work the Munich-Frascati 

coincidence experiment 4) was optimized to give a strain sensitivity of 

several times 10 -17. Only the thermal motion of the antenna and no 

correlated signals have been observed. 

In the meantime work went on to cool the bars down to liquid helium- 

temperature and to use electromechanical transducers less noisy than 

the original piezo crystals. Presently the best strain sensitivity 

reached 5) is 10 -18 , an impressive figure but still almost three orders 

of magnitude above the level of the signals expected to occur a few 

times per month. 

A completely different approach towards detecting gravitational waves 

is the concept of a broadband antenna. The basic idea is to sense op- 

tically the gravitational wave induced change of the metric of space- 

time, e.g. to measure the variations of the distance betweeen testmas- 

ses interferometrically. The simplest approach is a Michelson-inter- 

ferometer, where the beamsplitter and the two mirrors serve as test- 
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masses. For a gravitational wave of optimum polarization and direction 

of propagation the two arms experience strains of opposite sign as can 

be seen from Fig. i. The created armlength-difference can be sensi- 

tively detected. The observed phase-difference between the two inter- 

fering beams follows the influence of the gravitational wave directly 

and therefore the setup is inherently broadband. This allows the exact 

reconstruction of the signal in contrast to a resonant system, which 

shows only the spectral density of the signal at the resonance fre- 

quency. 

Another advantage of the broadband antenna is the possibility to in- 

crease the lightpath up to half a wavelength of a gravitational wave L 

~-c Tgrav/2 , thereby increasing the quantity to be measured, namely 

the path difference between the two arms. In contrast to this the di- 

mension of a resonance detector for a given frequency is limited by 

the speed of sound: L~-~ v Tgrav/2; therefore the Gravity-wave induced 

displacement in a broadband detector is larger by a factor of c/v. 

Certainly it is expensive to realize very long optical paths, and 

therefore, in several laboratories prototype interferometers have been 

constructed first. In order to get a long optical path the light beams 

are reflected back and forth in the interferometer arms many times 

before they are recombined at the beamsplitter. The beams in each arm 

can either be put on top of each other as in the case of a Fabry-Perot 

or be more or less well separated as in an optical delay line. The 

latter approach was chosen in the presently most sensitive setup which 

is run by a group at the Max-Planck-Institut fur Quantenoptik (Fig.3). 

The mirror distance 1 is 30 m, and for the latest measurements 90 

beams have been used to give a total pathlength of L = 2.7km. 

The beamsplitter is adjusted to sit in the symmetry plane between the 

two near mirrors. Consequently there are no spatial fringes to be seen 

at the output; the output power varies sinusoidally as a function of 

pathdifference between the two interfering beams as indicated in Fig.4. 

The information about the time dependent pathdifference is provided by 

a fast servo loop, which compensates deviations from a given point of 

operation by a voltage across Pockels cells sitting in the lightpath. 

This voltage is taken as the output signal. In practice only one 

output port is used, and the point of operation is one of the minima 

in Fig. 4. This implies, that a modulation technique has to be used 

for stabilizing the interferometer. 
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Fig. 3: Schematic diagram of the prototype interferometer showing the 

servo-loop used for stabilization. 
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Fig. 4: Light power at the two output ports of the interferometer as a 

function of optical path difference in the two arms. 

More easily to understand is another nulling method, where the differ- 

ence between the photocurrents at the two output ports is taken. The 

point of operation is one of the points a, b, c, in Fig. 4 of equal 

output power. Again a servo loop keeps the interferometer at the 

chosen point of operation. If now the input power fluctuates, then the 

two photocurrents fluctuate correspondingly, and the difference re- 

mains zero. But if a mirror is shifted, the power in output i e.g. 

increases, in output 2 it decreases, leading to a compensating voltage 

across the Pockels cells. 
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IV. Noise sources 

The most fundamental limitation of the sensitivity inherent to the 

detection technique arises because of the quantum nature of light. In 

a coherent state the photon number fluctuates according to 

Poisson-statistics. This shot noise will be dealt with in the next two 

sections. Here we discuss a few additional noise sources which have to 

be identified and controlled. The most prominent ones up to now have 

been the following: 

i) Mechanical perturbations from outside. 

Motions of the ground either of seismical or technical origin as 

well as acoustical noise are transmitted more or less to the in- 

terferometer and thus give rise to signals. All relevant optical 

components are therefore suspended as pendulums in vacuum. The 

suspension point is formed by a mass, which in turn is suspended 

by springs. There are several servo loops to damp the motion at 

the resonance frequencies of the pendulums and to keep the inter- 

ferometer at the desired position. The two stage pendulum suspen- 

sion turned out to be sufficient for the present setup at frequen- 

cies above several hundred Hz. If necessary, further stages may be 

added. 

2) Thermal excitations of eigenmodes. 

If all mechanical excitation from outside is reduced sufficiently, 

the thermally excited eigenmodes of the optical components become 

visible. The corresponding amplitudes are orders of magnitude 

above the acceptable level in an antenna for gravitational waves. 

Unfortunately in a mechanical setup resonances are very likely to 

show up just in the interesting frequency range around one kHz. By 

a very careful design of the mechanical structure one has to 

arrange all relevant eigenfrequencies above the frequency window 

of observation. In addition, the internal mechanical damping of 

the optical components has to be as low as possible. In this case 

the thermally induced motion is mostly concentrated around the re- 

sonance frequencies and the wings of the resonances, i.e. the con- 

tribution at other frequencies, are kept low. 

3) Frequency fluctuations of the laserlight. 

Frequency fluctuations give rise to a signal in the interferome- 

ter, when the pathdifference between interfering beams is not 

zero. In a setup with delay lines such a pathdifference cannot be 
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avoided easily, because of the difficulty of producing large radii 

of curvature with high accuracy. For a delay line a particular ra- 

tio between mirror distance and radius of curvature has to be cho- 

sen in order to bring the output beam to a given position. There- 

fore, a difference in the radii of curvature of the mirrors in the 

two arms implies also a different mirror separation and thus a 

different optical path. 

Another mechanism to convert frequency fluctuations into inter- 

ferometer signals is caused by scattered light, which finds its 

way to interfere with the main beam and which may have a huge path 

difference with respect to it. Up to now a careful two-stage 

stabilization of the laser frequency could eliminate spurious 

signals of this kind of noise. 

4) Time dependent beam geometry. 

The geometry of the laser beam like position, orientation and dia- 

meter, fluctuates by tiny amounts; e.g. the position of the beam 

may vary by about i0 -I0 m on a timescale of milliseconds. Usually 

nobody cares about such a small effect. However, in a not ideally 

symmetric interferometer these fluctuations are converted into 

signals; e.g. in connection with a small angle misalignment of the 

beamsplitter. It is not possible to align an interferometer per- 

fectly and keep it in this condition. Therefore a beam cleaning 

device was introduced, i.e. either a single mode Fabry-Perot-reso- 

nator or a single mode glass fiber. The laser beam has to be 

matched to this particular mode. Variations in beam geometry can 

be described as admixture of other modes, for which the beam clea- 

ning device is not resonant. These other modes are therefore not 

transmitted they are rather reflected, and only a small fluctua- 

tion of the transmitted light power is produced. This does not 

harm if as usual a nulling method is used in the measurement. 

In the Garching set-up it was possible to reduce the influence of all 

these noise sources below the shot noise limit discussed in the fol- 

lowing two sections. In the frequency window of interest between 500 

Hz and 5 kHz the sensitivity is close to the shot noise limit of about 

0.3 W, which is determined from the Poisson like photon counting sta- 

tistics at the output of the interferometer. The strain sensitivity in 

a bandwidth of 1 Hz is 10 -19 , and correspondingly 3x10 -18 in a band- 

width of ikHz. To increase the sensitivity one has to increase the 

pathlength and the light-power. 
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The pathlength can still be enhanced by a factor of 30, before half a 

wave length of the gravitational radiation is reached; to get the re- 

maining factor of i00, a lightpower on the order of ikW will be neces- 

sary. This might be possible by adding up coherently the beams of se- 

veral strong cw-lasers and by making use of the output power of the 

interferometer. In this so called recycling scheme the interferometer 

is run at minimum output power in one output port; almost all of the 

light therefore leaves through the other output port and can be added 

coherently to the input beam. If the overall losses can be kept small, 

a considerable lightpower can build up inside the interferometer. 

On the other hand, a very high power density at the optical components 

may introduce new problems. To increase the sensitivity of the detec- 

tors, it would at any rate be very helpful, if the new approach to re- 

duce the photon counting error by using squeezed states would prove to 

be feasible. 

V. Noise introduced by a beam splitter. 

The optical beam splitter is an important part of any optical 

interferometer and it is responsible for the Poisson-type fluctuations 

in the photon flux at the detector, also referred to as shot noise. 

The understanding of the beamsplitter is essential for the proposed 

application of nonclassical light fields towards improving the 

interferometer sensitivity 6) . 

Consider a semitransparent mirror which splits the incoming laser 

radiation into two beams of equal intensity (Fig. 5). The number of 

photons impinging onto the beam splitter per sampling time interval is 

N. If the laser light is in a perfectly coherent state than the photon 

noise is described by Poisson-statistics, J---~<ANin2> =~<Nin > . - -  In each 

output port of the beam splitter one finds half the number of photons 

<Nout > = <Nin>/2. As is well known the root mean squared fluctuations 

bye2, 
f-.--- 

do not reduce by a factor of 2 but ~<ANout2> = ~<Nin>/2. This 

can be derived by a statistical analysis taking into account that each 

photon can exit through either one of the two output ports but not 

through both 7) . 

The result of this statistical picture, however, does not readily 

comply with the naive picture of the beam splitter, where both the 

mean value and the fluctuations are cut down by a factor of 2. At 

first sight the naive picture is not unreasonable since one deals with 
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Fig. 5: Photon number fluctuations at the input and output ports of a 

beamsplitter. 

quite macroscopic fluctuations. 

sampling time of 1 ms the root 

order of ~<~N2> ~i0 8 photons! 

For i Watt visible laser power and a 

mean squared fluctuations are of the 

Caves 8) As Carlton M has shown, the factor of q2 missing in the naive 

picture can be accounted for by recognizing that there is a second 

normally not used input port to the beam splitter. Through this second 

port at least the zero point fluctuations of the electromagnetic field 

are coupled in if nothing else. These amplitude fluctuations are not 

negligible since they are of the same size for a coherent and the va- 

cuum state! 

Both pictures of the beam splitter give the same result for the noise 

and in both cases it is the particle nature of light which ensures 

that the intensity fluctuations stay at the Poisson level. In the 

first picture the beamsplitter adds noise, because it statistically 

sorts out photons and sends them one way or the other. The second 

picture at first sight looks like a wave-type picture. However, the 

zero point fluctuations entering through the second port are a direct 

consequence of field quantization. Therefore, also in this case the 

added noise is a result of the particle nature of light. The second 

picture although leading to the same result has a huge advantage over 

the statistical approach. It tells the experimenter which knob to turn 

in order to modify the shot noise limit. 
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VI. ~ . e  shot noise limit of an interferometer. 

The second normally not used input port of the beamsplitter plays a 

dominant role in the noise analysis of a Michelson-interferometer 

which we show graphically 9) . Based on these results it will be 

straight forward to see why squeezed light may improve the 

interferometer sensitivity. 

Fig. 6 shows a schematic diagram of a Michelson-interferometer, the 

endmirrors are tilted so that the second input port is spatially sepa- 

rated from the output ports. The fields entering the main (laser) and 

the second input port are denoted EL= ~Lcos (~oh+ ~) and ~s = E s cos 

(~t+ ~) respectively. It is now assumed that the phases are near zero, 

~-~zO, and that the amplitude of the laser is dominant, E L >> E s- 

For an optical phase difference of ~ ~7~ in the two arms the two out- 

put beams have nearly equal power I 1 ~ 12. Operating the interferom- 

eter near this point, the difference of the two output powers 12 - I 1 

may serve as the signal that contains information about the applied 

strain. When calculating the fields in the two output ports one has to 

take into account the phase shift at the beamsplitter. Independent of 

L~u 

[ yi,ooo, oo , 
Fig. 6: Schematic diagram of a Michelson-interferometer showing the 

second input port of the beamsplitter. 

the type of beamsplitter these phase shifts can be obtained from a 

time reversal or energy conservation argument. If two beams combined 

by a beamsplitter interfere constructively in one output port they 
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must interfere destructively in the other output port. In other words, 

if the phase difference of the two interfering beams is ~ in one of 

the two exits then it must be ~+~ in the other one (see Fig. 4). 

With the above definitions the fields in the two output ports are 

E,=#[ELsin(~t+++A)+ELSin(~t++)+Essin(~t+e+~)+Essin(~t+~+~)] (3a) 

~2={[ELsin(~t+~+A)+ELsin(~t+~+~)+Essin(~t+~+A)+Essin(~t+~)] (3b) 

The beam splitter phase difference ~ appears in one output port for 

the E s and in the other one for the E L - beams owing to the symmetry 

in the geometrical arrangement. 

We will now use the graphical representation in a phase diagram to 

study the influence of phase and amplitude fluctuations on the signal 

12 - I 1 . In these diagrams the vectors representing the field 

amplitudes coming back from both arms of the interferometer are shown 

as well as their vectorial sum. Fluctuations in either of the two 

amplitudes and phases are discussed separately. The results shown hold 

of course only as long as the optical path difference in the two arms 

is less than the coherence length of the laser light (see Sec. IV). 

L%,o bt Esin 

I "4 
Fig. 7: Phase diagram for the graphical determination of the electric 

field amplitudes E 1 and E 2 at the two outputs of the inter- 

ferometer. Each field is decomposed into two parts, Esi n and 

Ecos, oscillating in phase with sin t and cos t respective- 

ly. The figure shows the influence of amplitude fluctuations 

of the laserlight. 
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I) Fluctuations in the amplitude E L of the laser field. 

Fig. 7a shows the field vectors for the case Es, ~ , and ~ = 0 at 

the point of operation A =7/2. If there are amplitude fluctuations 

of EL, here represented by a positive excursion (small added vec- 

tors) then also the resulting field amplitude E 1 will fluctuate. In 

the other output port the fields which have to be added are nearly 

the same, the only difference being that the phase of one of the 

recombined fields is shifted by ~ (Fig. 7b). Here the field vec- 

tors span the same rectangle as in Fig. 7a. The magnitude of the 

resulting field vector E 2 fluctuates like the one of E 1 . In fact E 1 

and E 2 correspond to the two diagonals of the parallelogram they 

span. Since for a rectangle the length of the two diagonals is the 

same, the difference in the photo currents 12 - I 1 = E2 2 - El2 

stays zero irrespective of the amplitude fluctuation of the laser. 

2) Fluctuations in the phase ~ of the laser field. 

A phase fluctuation is represented by a small vector of length 

E L ~ which is added at right angles to the main fields (Fig. 8a,b). 

The sign of these small vectors follows from Eqs. 3a, b. Again one 

finds that the field amplitudes at the two outputs correspond to 

the diagonals of the same rectangle and E 1 = E 2 Consequently, 

the signal is also indepent of phase fluctuations in the laser 

field. 

a) Esin b) 

E os /I 
I 

I 
I 

Esin 

I 

i I 

Ec0s 

Fig. 8: same as Fig. 7, but influence of phase fluctuations of the 

laserlight. 
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3) Fluctuations in the field amplitude E s at the second input port. 

The sign of the small vectors representing the amplitude fluctua- 

tions of E s have to be traced carefully. Fig.9a and b show that, as 

before, the output fields E 1 and E 2 fluctuate in correlation as to 

cancel out the corresponding photocurrent fluctuations, Ii-I 2 = O. 

o) Esi n b) 

I_ 
Esin 

Fig. 9: same as Fig. 7, but influence of amplitude fluctuations at 

the second input port. 
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Fig. i0: same as Fig. 7, but influence of phase fluctuations at the 

second input port. 

4) Fluctuations in the phase ~ at the second input port. 

Finally there is a type of fluctuation which produces noise in the 

signal 12 - I I. The resulting field vectors span a parallelogram 

which is not a rectangle, 12 - I 1 ~ 0( Fig. 10a,b). A quantitative 

evaluation of Eqs. 3a,b yields the noise in the signal 
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(I2-II)noise ~ 2~EsEL, for ~cl and Es~E L 

The term ~.E s represents the amplitude fluctuations in the cosine part 

of the field at the second input port 

(I2-I,)nois e ~ 2EL~<~Es,cos2> 

In units where the field amplitude is given by the square root of the 

photon number, the quantum mechanical rms-fluctuations of a coherent 

field are ~<~Es,cos2> = 1/2. The size of these rms - amplitude 

fluctuations are independent of the meanfield and are the same as for 

the vacuum field. 

The noise in 12 - I 1 determines the sensitivity with which the optical 

phase difference ~ : ~  and hence the optical path difference in 

the two interferometer arms can be measured. It has to be compared to 

the signal (I2-I1)signal ~ # EL 2 

For EL 2 = n photons in the laser mode one finds the quantum limit for 

the phase sensitivity to be 

(6~)min = 2~<AEs,cos2> / ~n 

This corresponds to a smallest detectable mirror displacement of 

(6~)min = X(6#)min / (4=  ) 

In the case where the field at the second input port is the vacuum or 

a coherent state, the fluctuations are ~Es,cos2> = 1/2, which yields 

the usual shot noise limit 

(6t)min = l/(4wV~n) 

VII. Improving the interferometer sensitivity using squeezed 

states. 

The discussion in Sec. VI illustrates that the noise in the signal is 

due to only one out of four possible noise sources i.e. the 

fluctuations at the second input port out of phase with the main laser 

explains why light in a squeezed state with~Es,cos2><i/2 field. This 

coupled into the second input port should lead to a displacement sensi- 

tivity better than the shot noise limit. 
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The fact that Heisenberg's uncertainty relation requires the in-phase 

amplitude fluctuations at the second input port to be correspondingly 

larger,4~Es,sin2> > 1/2, does not harm since the signal is not sensi- 

tive to these fluctuations as discussed under point 3) in Sec. VI. 

The sensitivity increase that can be hoped for is of course limited. 

Ultimately there is a limitation caused by fluctuating photon pressure 

on the mirrors since the latter is enhanced when using squeezed 

states. Apart from that there are some technical considerations. Un- 

like coherent or thermal light fields, squeezed states change their 

characteristics under linear attenuation towards that of a coherent 

state. Therefore, it is essential to have a photodetector quantum ef- 

ficiency as close to 100% as possible and to avoid losses. It also 

turned out that a visibility less than one critically limits the sen- 

sitivity gain to be expected when using squeezed states I0). Neverthe- 

less, it is reasonable to hope for a sensitivity which can otherwise 

be reached only for a 5 to i0 times higher laser power. In view of the 

high laser powers which are aimed at, the squeezed state technology 

looks promising and viable. 
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"QUANTUM JUMPS" OBSERVED IN SINGLE-ION FLUORESCENCE 
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Abstract 

We have demonstrated that interruptions of macroscopic duration ap- 
+ 

pear in the 493-nm fluorescence of a single trapped and cooled Ba ion. 

They are caused by sudden transitions of the ion into the "dark" 2Ds/2 

state. - Multiple simultaneous jumps of three ions indicate cooperative 

interaction with the light. 

Introduction 

The canonical interpretation of quantum mechanics attributes calcu- 

lable expectation values to statistical mean values of variables. With 

conventional measurements in atomic physics, large ensembles contribute 

to the measured quantity, and averaging is inherent to the act of meas- 

urement. If a single particle is observed and evolves on a time scale 

fast compared with the time of resolution of the measuring device, we 

invoke ergodicity to expect time averages as the result of the meas- 

urement. However, if time resolution is good enough, we have no safe 

prediction for the evolution of the atom to be observed in "real time" 

According to Bohr's model of the hydrogen atom I I I, atoms undergo in- 

stantaneous transitions from one eigenstate of energy to another one 

upon interactions with the radiation field. It is certainly conceiv- 

able, on the other hand, that even with fast and repeated single-atom 

detection, only time-averaged quantities are meaningful results of the 

measurement. Consequently, quantum-mechanical superposition states might 

depict individual atoms even on the small time scale set by the sequence 

of measurements, i.e. they might be "real". 

This alternative is open to decision by experiment. Recently, the 

preparation of single, cold atomic particles - ions - in specified in- 

* Also: JILA, University of Colorado and NBS, Boulder, Colo. 80309, USA 
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ternal and external states has been demonstrated 12-4 I . Ensemble aver- 

aging, unavoidable in conventional measurements, is absent in experi- 

ments with single atomic particles: these experiments allow, for the 

first time, direct proof of one of the most basic concepts in quantum 

mechanics by repeated identical preparation and observation of an in- 

dividual atomic system. Intuitive arguments predict that transitions 

on a very weak line are detectable via the excitation of resonance flu- 

orescence on a strong transition coupled by a common level 151. When 

such a rare transition, say, an absorption event, occurs on the weak 

signal line, the fluorescence on the neighbouring line is supposed to 

be quenched since the atom - or ion - in the upper, metastable level 

of the weak line is no longer available for the fast excitation and flu- 

orescence cycles. 

These conclusions have been confirmed by rigorous quantum-statis- 

tical calculations 16-111. They show that interruptions in the fluo- 

5 2D3/2 
6 2$~/2 

Fig. I: Simplified energy 
level scheme of Ba +. Wave- 
length values in nm. 

rescence are expected which are on the 

order of the lifetime of the metastable 

level. These "dark" or "off" periods are 

the signature of quantum jumps; they have 

been observed recently 112-151. In our 

experiments 112,151, a single Ba + ion is 

localized in an electrodynamic ion trap 

and optically cooled to less than 10 mK 

116,171. The relevant energy levels of 
+ 

Ba are shown in Fig. I. Resonance fluo- 

rescence is excited at the 493-nm line 

with a cw laser, and a second laser beam at 650 nm couples the ~D3/2 

level to the continuously excited 2Pl/~ level. When the ion, once in a 

while, drops into the 5 2D5/2 level - upon laser-pumped electronic 

Raman-Stokes transitions -, the fluorescence becomes suppressed. Thus, 

the transitions into and out of the "dark" 5 2D5/2 state are observed 

with 1OO% detection efficiency, and with time resolution which corre- 

sponds to the mean time separation of the photoelectron counts of the 

fluorescence signal. 

Experimental 

A thermal beam of barium atoms is ionized by impact with 1-s pulses 

of a very weak electron beam. After several unsuccessful attempts to 

generate an ion, eventually green fluorescence signalsthe apprearance 
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of a Ba + ion in the center of the 1-mm trap, where the foci of the two 

coaxial laser beams are located. One beam is generated by a cw Cou- 

marine-102 laser, the other one by a cw DCM laser. The green laser is 

down-tuned from resonance by 150 MHz for optimum cooling the ion, where- 

as the red laser is kept at the center of the 6 ZPl/z - 5 2D3/z line. 

The fluorescence signal is detected by a microscope, cooled photo- 

multiplier selected for low dark current, and a photon counter. 

An additional Ba hollow cathode lamp permits us to weakly excite the 

6 2p~/2 level from the ground or 5 eD3/2 metastable states 1131, and a 

third laser at 614 nm serves for the selective release of the ion from 

the "dark" level. 

Interrupted Fluorescence 

Fig. 2 shows a recording of the ion's fluorescence at 493 nm. The 

mean "on" time T+ is 136 s + 13 s, determined by the probability for 

off-resonant Raman-Stokes transitions (via 6 2P~/2) excited by the green 

6 Fig. 2: Recording of the 
~ laser~excited fluores- 

cence, at 493 nm, of a 
o o single Ba + ion 

0 100 200 500 400 sec 

and red laser light at 60 and 103 fold saturation of the respective 

transitions 2Si/2 - ~PI/2 and ZD3/2- ZPl/~ (Fig. 3). The mean "off" time, 

"[_ = 8 s, is dominated by Raman anti-Stokes transitions. There is also 

a small contribution from collisionally quenching the "dark" state 

5 ZDs/2 . 

Irradiation with the light of the Ba hollow cathode lamp excites the 

ion to the real 2P3/2 level with a chance to decay into the "dark" state 

that is higher than for the far off-resonant Raman excitation. Thus, 

this irradiation reduces the mean "on" time to 24 + 4 s. 

For unambiguous identification of the "dark" state, we have irradi- 

ated the ion by additional cw laser light at 614 nm corresponding to 

the 5 ZDs/2 - 6 2P3/2 transition. When a 0.4-s pulse is applied after 

the observed fluorescence went off, the jump is immediately undone by 

re-excitation, and fluorescence reappears (Fig. 4). With continuous 
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irradiation, no jumps appear at all, since the ~Ds/2 level is coupled 

to the superposition of levels which forms the "on" state. This kind 

o f  m a n i p u l a t i o n  o r  " s h e l v i n g  p r e v e n t i o n "  r e p r e s e n t s  t h e  a c t i v e  c o n t r o l  

of an internal degree of freedom of the ion. 

Fig. 3: Distributions of the 
lengths of "on" and "off" times. 

From recordings of the fluorescence signal as in Figs. 2 and 4, the 

two-time intensity correlation has been calculated. There are predic- 

tions of this quantity 19,101 : a superposition of two exponentials, one 

fast and one slowly decaying, which correspond to the strong and weak 

02 

o 
o loo 200 

TIME (SEC) 

Fig. 4: Single-ion "on" and "off" in- 
tervals of fluorescence (top). Remov- 
ing the ion from the "off" state (ZDs/2) 
by manually pulsed laser light at 614 nm 
(~, center). Coupling the 2D5/2 level 
to the "on" state by continuous 614 nm 
laser light, which results in :'shelving 
prevention" (bottom). Full length of 
uninterrupted fluorescence recording: 
20 min. (From Ref. 15) 

transitions, respectively. Only the latter one is observable with the 

0.4-s experimental sampling time, and the corresponding modified ex- 

pression becomes 

--1 -i 
<I(t)I(t + T)> / <I(t)> 2 = I + T_:- exp[-(~_ +~+ )T] 

T+' 

Fig. 5 shows two-time intensity correlations with and without exci- 

tation of 2P3/2 by coherent light. They are in agreement with the val- 
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Fig. 5: Two-time intensity correla- 
tion function calculated from fluo- 
rescence recordings with laser exci- 
tation only (lower trace), and with 
additional lamp excitation of the 
2P3/~ level (upper trace). The oscil- 
latory feature indicates the exist- 
ence of population pulsations. 
(From Ref. 15) 

ues of T+ and T_ derived from the distributions of "on" and "off" times. 

The total rate r; l = T~ I + T[ l is dominated by ~[l. The combination of 

2P3/2 excitation and subsequent decay into the 2D5/2 level with anti- 

Stokes back pumping forms a cyclic process which shows up as modulation 

of the intensity correlation function (s. Fig. 5), the signature of 

population pulsations. Note that without excitation of the 2P3/2 state 

by incoherent light the generalized Rabi frequencies at the pump and 

Stokes transitions, and also the effective two-photon Rabe frequency, 

are very large due to the lasers being detuned far off the transitions 

involving the 2P~/2 relay level 1181. Thus, the population cannot adi- 

abatically follow, and it does not pulsate. 

Single-Ion Spectra 

Excitation spectra of single-ion fluorescence have been recorded by 

scanning the 650-nm light across the 2Pi/2 - ~D~/= resonance and detec- 

ting the green scattered resonance light 1191. With a well-cooled ion, 

these spectra show sudden reduction of the signal, when the up-scanned 

light has crossed the line center. This phenomenon is caused by opti- 

cally heating the ion, i.e. making its orbit grow 1201. With a rather 

hot ion, this effect is negligible, and occasional transitions of the 

ion into the dark 2Ds/2 state unambiguously reveal themselves as breaks 

in the spectrum (see Fig. 6). Since the ion moves most of the time far 

off the trap centre, it feels the rf electric drive field, at 35 MHz, 

Which considerably modulates its speed. The well-known narrow resonance 

on the low-frequency wing of the spectrum which is generated by electro- 

nic Raman transitions, 2Sz/2 - 2D3/2, develops conspicuous motional 

Sidebands. 



116 

\ 

FREQUENCY OF 6SO-rim LIGHT 

Fig. 6: Fluorescence signal of single hot 
ion vs. frequency of 650-nm laser. Interrup- 
tions (centre and right) mark quantum jumps. 
Raman resonance (left) shows motional side- 
bands (top). Frequency marker: 20.8 MHz/ 
fringe (bottom). 

Multiple Jumps 

The fluorescence of a small cloud of three ions shows four discrete 

intensity levels correspondinq to three, two, one, or no ions in the 

"on" state (Fig. 7). Upon inspection of the recorded traces it is obvi- 

ous that simultaneous jumps of two or even three ions happen much more 

often than expected as random coincidences. This phenomenon has been 

substantiated by quantitative evaluation of the rates of random multiple 

jumps 1151. It turns out that the observed rates exceed the random rates 

by more than two orders of magnitude. This observation indicates that 

the ions interact collectively with the light fields. Moreover, this 

collective action does not require ensemble averaging in order to be- 

come detectable as in conventional experiments on super-radiance 1211. 

It involves real coupling of individual particles, as is proved by the 

huge excess of simultaneous jumps. Macroscopic collective phenomena, on 

~2 

~o 
1 

40 80  120 160 200 

"hUE (sEc) 

Fig. 7: Multiple jumps documented in 
the laser-excited 493-nm fluorescence 
of three Ba + ions. (From Ref. 15) 
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the other hand, are described in terms of enhanced probability for a 

microscopic process as caused by the presence of the entire ensemble. 

Conclusions 

We have observed interruptions of random time duration in the fluo- 

rescence of a single Ba + ion stored and optically cooled in an electro- 

dynamic trap. The mean duration of the bright and dark intervals has 

been evaluated for the ion interacting with two resonant laser beams, 

and also for additional excitation to the 2P3/2 state by incoherent 

light. The =Ds/2 level has been unambiguously identified as the "off" 

state by re-exciting-the dark ion to the 2P3/2 state in order to make 

it join the "on" state - a superposition of ~SI/2, 2P~/2, and ~D~/2 - 

again. This procedure establishes "quantum-manipulation" of an internal 

degree of freedom of a single atomic particle. The observed two-time 

intensity correlation function agrees with the time distributions, and 

indicates the existence of population pulsations. Three trapped ions 

show simultaneous multiple jumps at a rate vastly exceeding random co- 

incidence. The cloud interacts collectively with the light by coupling 

the individual particles. 

The novel type of measurements exercised in these experiments does 

not rely on ensemble averaging. Instead, one particle is prepared under 

specified conditions over and over again, and a very large number of 

individual measurements is carried out - essentially one measurement 

for each photoelectron counted. 

This approach has allowed us, by proving the existence of macroscopic 

pauses in the single-ion fluorescence, to ver±fy that the dynamics of 

single atomic particles is governed by sudden transitions. They are not 

artifacts of the temporal discreteness of the measuring process. They 

do not establish, on the mircroscopic time scale, statistically averaged 

Pop ulations in states. Rather, they make an atom indeed occupy a par- 

titular state for a time interval on the order of its lifetime. 

This work was supported by the Deutsche Forschungsgemeinschaft. - 

One of us (P.E.T.) thanks the JILA Visiting Fellows Program for support. 
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MACROSCOPIC QUANTUM JUMPS 
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Abstract 

When an electron is prepared in a metaatable state, it will remain there for some 

period of time, untii it eventuaIly jumps back to the ground state by the emission 

of a resonant photon. This event can be monitored convenientiy by coupling the ground 

stab@ to a dipole aliowed state through a resonant laser field. Then the return of 

the electron from the forbidden state manifests itself in a sudden appearance of 

fiuorescence from the aliowed transition. When the forbidden transition is being 

driven resonantly as weiI, the fluorescence wiil be quenched again, whiie the eIec- 

tron returns to the forbidden ievel. If this intoitive picture is basically correct, 

then it is possible to monitor the individual quantum jumps, which are accompanied 

by a single photon event only, by the random appearance and extinction of a strong 

fIuorescenoe signal - by a macroscopic signaI. This process is a unique aingie atom 

phenomenon which is washed out graduaily, when more and more particies participate 

in the scattering process. 

1. Introduction 

Quantum mechanics without any doubt is one of the corner stones of our present 

day understanding of fundamental processes in nature. But even after more than 60 

Years since the formulation of the concept, we still have - now and then - our 

difficuities with quantum theory. It is not the application of the formal apparatus 

to some specific problem which is bothering us, it is the lsck of an intuitive view 

which can leave us puzzled when considering a new quantum phenomenon. One may argue 

that intuitivity is not a relevant ingredience of theoretical physics - all that is 

necessary is a consistent theory, which allows one to predict the outcome of any con- 

oeivable experiment in a satisfactory way. This view is correct as long as a well 

defined physical question is formulated end wait@ to be answered theoretically. How- 

ever, in order to come up with new ideas, and to suggest new experiments, experi- 

ments where the quantum nature of the processes dominates the dynamics, we have to 
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rely on intuition first, in order to motivate a subsequent anaiytical treatment of 

the quantum problem. 

Intuition has to do with experience and therefore can be acquired to a certain 

extent. In the special case here, it seems that experience can be obtained by con- 

sidering a number of simpie and transparent physical exampies, where the quantum 

nature of the process is essential for its understanding. Experiments on a smalI 

number of atoms, or even on single particIes are the least likely to disguise the 

underlying quantum mechanical nature and its subtIeties that may otherwise be 

washed out by the average over a iarge ensemble. In the field of quantum optics e.g. 

single particle experiments have become available recentIy either through weak 

atomic beams (1,2), or by the use of ion traps (3,4), and the Jaynes-Cummings model 

(5,6~7), as well as Anti-Bunching (I,2,8,9,10), two fundamental single particle 

quantum effects, have already been realized experimentally. 

The early quantum mechanics of Bohr was able to predict the stationary proper- 

ties of the hydrogen atom i.e. the energy levels with great accuracy but the dyna- 

mics had to be introduced artificially, by introducing the concept of sudden jumps 

among these eigenstates, the Quantum 3umps. This ad hoc assumption, which had no 

counterpart in the dynamics of the SchrSdinger equation caused a vivid controversy 

in the early days of quantum mechanics. The discussion finally subsided Iong ago, 

since the adoption or rejection of this concept was felt to be more a matter of taste 

since there had been no conceivable experiment that could demonstrate the discon- 

tinuous fashion of these transitions. The main reason being that all experiments 

until now dealt with an enormous number of particles, and all individual jumps would 

have been smeared out by the average over the ensembJe. Spontaneous emission of 

a collection of atoms results in a continuous signal on the photon detector, even 

if one insists that the signai is made up from a discrete number of individual 

events. 

The progress in experimental techniques over the last years, which could cer- 

tainly not to be anticipated in the early days of quantum mechanics, now makes it 

possible to perform experiments with just a single particle. In which way would 

fluorescence from a small number or even a single atom be substantially different 

from fluorescence at an entire ensemble of atoms. Obviously, whenever large fluc- 

tuations are expected to occur in the single particle experiment, they wiil be 

averaged out completely in the experiment with a fluorescing gas, and noise is min i~ 

mized due to the presence of many atoms; 

In a single atom experiment this averaging does not occur, and we can expect to 

see a signature of the quantum fluctuations which are responsible for the spontsne ~ 
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ous decay. When a dipole allowed transition is driven in saturation, up to lO~B 

photons per second might be scattered and the photon multiplier will produce a con- 

tinuous signal and no traces of the individual counting events are visible. A di- 

pole forbidden transition on the other hand may typically produce a single scattering 

event per second, a signal that is unquestionably way below the noise level of the 

detector. The only way to combine the high intensity of the allowed trsnsition with 

the convenient time scale of the forbidden one is to consider a three level con- 

figuration. This shelving idea that was first suggested by H. Dehmelt (ll) as s 

means of performing high resolution spectroscopy, would have gone almost unnoticed 

if Cook and Kimble (12) would not have pointed out the fundamental character of this 

effect and its relation to the quantum measurement process. 

Dehmelt suggested s three level system in V.configuration, where the ground state 

is coupled to an allowed as weli as a forbidden excited state which are both driven 

resonantly by two individual laser fields as indicated in Fig. i. 

"' 2 

I+"1'1 

Fig. 1 

The ground state is connected with two excited states via an allowed transition 
|3> -- tl> and a forbidden transition12> -- jl>. The corresponding life times are ~'~ 
and ~ . The two transitions are driven by their respective laser fields at rates 

R I and R 2. 

The transition frequencies are supposed to be well separated, such that the fluores- 

cence signals can be spectrally resolved and the competition of these two transi- 

tions wilI result in a unique feature of the fluorescence signal. At first glance 

it seems to be quite evident that the electron, when driven aIong the aIiowed tran- 

sition, wili emit intense fluorescence of frequency t 0 l, which, is quenched even- 

tually, when the electron is being shelved in the forbidden state. ~he resulting 

period of darkness is expected to last for a life time of this state, and the spon- 

taneuous return of the electron to the ground state will trigger the strong fluores- 

cence again. Thus, also the atom is driven in s purely continuous fashion, it is 
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expected not to respond continuously, but the strong fluorescence from the allowed 

transition is interrupted at random time instances by random periods of darkness. 

This is just one of those examples mentioned above, where we have been relying 

entirely our intuitive understanding of quantum mechanics in predicting the out- 

come of a new experiment. The tacit assumption made, however, was that in any in- 

stance of time, the atom can oniy occupy s single energy eigenatate. A mixed quantum 

mechanicai state described by a statistical operator with vanishing off -diagonai 

elements, might weii be described intuitively by atoms that only exist in eigenetetes 

at a time, however, quantum mechanicaI superpoaition states cannot be viewed in this 

way. Since the atom is driven coherentiy, one may argue that the coherent super- 

position state is cioser to physicai reaIity thanthe incoherent mixture. Looseiy 

speaking, in a superposition state aIl the leveis are occupied simuItaneousiy and the 

prediction of random jumps just on intuitive grounds is much less obvioUs. Since we 

are deaiing with an interesting and fundamental probiem, a detaiIed quantum statis- 

tical treatment~is in pIace in order to resoive the question such that no doubts 

about the nature of the process remain. This can only be done when we do not assume 

a priori that the quantum jumps exist (i2,13), and only describe their statistical 

properties, but prove their existence in s first principle calculation (14,15). 

When we try to devise a theoretical description of this process, we ten~ to be a 

iittle irritated by the fact that quantum mechanics is a statistical theory based on 

the concept of ensembies and ensemble averages, a concept which at first sight can- 

not be appiied to a single particle experiment. An individual trajectory like the 

temporal fluctuations of the fluorescence intensity l(t) cannot be predicted theore- 

tically in its actual time dependence. Only the average over many repeated and identi" 

cally prepared experiments represent an ensemble and can be compared with theory. In 

the present case, an ensemble average over the single particie trajectoriea inevi- 

tably averages over the random dark periods, and leaves us with a constant mean in- 

tensity. To be s little more specific, let us consider a three level system driven 

in saturation by both resonant laser fields, then the average fluorescence intensi- 

ty of the strong transition is given by: 

- I/3 

where ~ is the corresponding spontaneuous life time. This is to be compared with the 

intensity obtained in a singie run, which is expected to be: 

during the emission period and zero in the dark times. When we assume that the 

emission period Iasts twice as iong as the dark time, then a time average over the 

stochastic signaI is identicai with the ensemble average above. Neediess to say thst 
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the ensemble average of the intensity alone does not say anything about the exis- 

tence of the quantum jumps. 

This situation, however, is not at all different from what we know from classi- 

cal statisticaI mechanics, lhe Brownian partioie e.g. traces out complicated and 

entangled trajectories in phase space, which cannot be predicted theoreticaiIy in 

any det&ii. The average coordinate e.g. remains at its initial value and does not 

dispiay any sign of the random evoIution. But in cIassical statistics we can do 

better and caIculate higher order moments that contain more statistioaI information. 

Instead of calculating the entire hierarchy of moments of the coordinate x we can 

also caicuIate the probability density in space, as it evolves in time: 

This function is obtained as the solution of aFokker Planck equation and contains 

the entire statistical information of the process, provided the Brownian motion is 

suitably described by a Markov process - and there is nothing more that one can say 

theoretically about the process. 

Also in quantummechanics we can do better than merely calculating the average 

over the basic variabies, like the intensity in our case here° We can also caIcu- 

late variances and cummuiants of higher order, and describe the statistics in in- 

creasing details. Instead of the moments of the intensity we could also caIcuiate 

those of the photon counts detected in a given coliection period T: 

< n >  , 

The en t i re  h ierarchy i s  contained in  the photon count ing p r o b a b i l i t y  W(n,T) i . e .  

the p r o b a b i l i t y  o f  observing n events i n  a c o l l e c t i o n  time T: 

<me> : Yl  ¢ 

In case that  we can show that  t h i s  p r o b a b i l i t y  a l l o w s u s  to d i s t i ngu i sh  between 

smooth or i n t e r m i t t e n t  f luorescence, a quantum mechanical ca l cu la t i on  of  W(n,T) 

would provide the required f i r s t  p r i n c i p l e  evidence of  the existence of  quantum 

jumps. 

2. Correlation Functions 

The electromagnetic field, as created in any elementary process is subject to 

fluctuations, which may resuit from thermai noise in the source. ]he quantum nature 

of the source and the field is an inevitable source of fiuctuations, which makes it 

necessary to use a quantum statistical description. We will restrict ourselves to 

the mode picture, and disregard all spacial properties of the field. El(t), El(t) 

is the quantized form of the field amplitude of frequency,S, and we will con- 

Sider here only its stationary properties. One way to characterize the statistical 
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fluctuations of the light field in increasing detail is to set up the hierarchy of 

normally ordered correlation functions (16,17). 

The most elementary correlation function that does not already vanish due to the 

phase symmetry of the field is given by: 

~q . + 

which for t=O represents the average intensity, ~ is the statistical operator of the 

~'~(t) ensemble. The temporal correlations characterized by G ~ display the less of co- 

herence due to phase fluctuations. The amount of randomness in the field intensity 

is measured by the-following correlation function (18,19) which is not sensitive to 

phase noise: (=) + + 

I n t u i t i v e l y  speaking, G~l( t )  i s  a measure for  t h e p r o b s b i l i t y  of  observing a photon 

of frequency{M j at t=0 and another photon of frequency ~£a  time t l a t e r .  The corre- 

l a t i on  of these events characterizes the f luc tua t ions  of the f i e l d  i n tens i t y .  From 

the. definition of G --{~' (t) it is convenient to construct a conditional probability 

in the following way: 

---- Gij ( * ) / G j  (o1 

where P~j ( t )  i s  the p robab i l i t y  of observing a photon of  frequency ~ ; s t  time t ,  

a f te r  a photon of  frequency@a~ had been detected with ce r ta in ty  at t=0. Since we 

are only looking at two chosen instants in tim~ and not at what has been happening 

in between, P~ (t) provides only an incomplete picture of the process, and it is 

natural to proceed to correlation functions of higher order. P~i (t) only provides 

the information that there are photons of frequency6Jj and e2~at t=O and t respec- 

tively, but-not whether there had also been emission events in between, i.e. P does 

not guarantee that the observed photon62~ at t is the first to be detected after the 

observation of the photon at6}~. 

Before we precede to discuss the hierarchy of photon correlations in the next 

chapter, we want to demonstrate here that the intensity correlation function already 

contains enough information to give us a hint, whether it is realistic to expect the 

quantum jumps or not. For this purpose we compare the two photon correlation function 

of the driven three level system, with the corresponding and well-known two level 

result. 

In order to keep the calculations simple and for most of the time in analytical 

form, we assume for the moment that the dynamics of the atomic system can reasonably 

be characterized by rate equations. 
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The electromagnetic field is created by the oscillating dipoles: 

E * ( ~  ---- p(~'~ , E ( ~  - - , -  P ~  
where P I~ + is the operator of the atomic polarisation, and t and t' differ by the 

time of propagation from the source to the detector (20,Zl). lhe dynamics of the 

field is thereby traced back to the Bloch dynamics of the atomic source. With the 

help of the quantum regression theorem (22) we are able to calculate all desired 

correlation functions provided that we know the generai solution of the corres- 

ponding Bloch equations for arbitrary initial conditions. Using the notation ex- 

plained in Fig. 1 we find for the tree ievel system the following auto-correlation 

functions: 

, (  , 
R,(t~ = 5 1,  ~ ( e  3 e  

and 

I 

For the cross correlations we find the 

quence of observation. 

_ 3  

same results as above, depending on the se- 

"P,z (~'j = P,,, (+.) 

In case the weak transition is not driven, we are left with a two level system 

which is characterized by: 

I .2.~,~ P,, = ) 
l Pit (t) is compared with PIt (t). At a first look there is already a significant 

difference between the correlation of the strong fluorescence in the presence and 
! 

the absence of the weak transition. While Pi~(t) is a monotonously increasing func- 

tion, Pil (t) follows the same functionality only over theshort time scale and fi- 

nally decays towards the uncorrelated result on the long time scale of the meta- 

stable state. ~e will see that this hump in Fig. 2 is a typical indication of the 

appearance of random dark times. 

The conclusions that can be drawn from these four correlation functions are 

summarized in Fig. 3. Assuming that the fluorescence from the tree level system is 

intermittent, we have sketched in the upper part the strong emission from the 

allowed transition and have indicated schematically the individual emission events - 

equidistant for convenience, lhe lower part symbolizes the weak emission from the 

forbidden state. We expect the dark time to last for a life time of the metastable 

state ~l. In case of saturation, the period of emission must then last for about 
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Fig. 2 
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Intermittent fluorescence from the strong transition is shown in the upper part, wh e~e 
the small Iines symbolize the individual photon events in the bright periods. The 
lower haIf correlates the spontaneous emission events from the forbidden state with 
the periods of emission and darkness. 
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twice that period in order to yield the correct average intensity. The length of 

the individual fluorescence end the dark periods, however, will fluctuate randomly 

about these average values. 

P, ( t )  rises from zero on a time scale ~i, the average time between the emission 

events, indicating that two photon8 are not likely to be emitted arbitrarily close 

to each other - this is well-known under the name of anti-bunching. In order to see 

the first photon with certainty, t = 0 must lie inside an emission period, which it- 

self lasts roughly for the life time of the metastable state. It is very probable to 

find another photon e time t later as long as ~t~ ~;J . On this time scale the 

emission is expected to be identical with the two level fluorescence. Only when we 

search for the second photon, at times t ~J after the first one, it is more and 

more likely that the instant t falls into s dark period and no signal is registered. 

This is indicated by the deviation of the correlation function from the two level 

result, and the drop in probability. The humped correlation function can therefore be 

understood qualitatively using the picture of intermittent fluorescence. 

Pz~(t): When the electron returns from the metsstable to the ground state it is 

most likely driven up to the allowed level which marks the end of a dark period, and 

the strong fluorescence signal reappears. Therefore, shortly before the beginning 

of this signal, a photon of the weak transition must have been emitted, roughly a 

time ~i "I earlier. Since the times of reappearance of fluorescence are approximately 

~seconda apart, it is very unlikely to see a second photon of frequency ~ earlier 

than t ~ t" 

PI2 (t) characterizes the conditional probability of observing a photon of frequency 

~! a time t after a photon of frequency Wzhad been detected. Since the emission from 

the forbidden state triggers the strong fluorescence, this probsbiIity rises on a 

time scale ~ol and will fall off again on the long time scale ~i Since the photon 

at oJ2is emitted very close to the beginning of the fluorescence period it doesn't 

really matter which of the photons had been detected first, it is only the last one 

~hich characterizes the correlation and therefore it is rather obvious that Pl2(t) 

= PII ( t ) .  

P21 (t): A photon of frequency(~, is emitted in the bright periods, while the photon 

from the metastable state is emitted at the end of the dark period, therefore we have 

to wait at least a time ~', until the conditional probability Pm, (£) rises appreci- 

ably from zero. 

The correlation functions so far do not prove, but strongiy support our intuitive 

picture from an intermittent fluorescence signal. In order to show that the statis- 

tical properties of the emission are uniquely related with a signal that displays 
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random sequences of emission and darkness, we have to procede to higher order 

correlation functions or to an equivalent statistical description. This will be 

done in the next chapter~ by deriving the photon counting statistics of the process. 

Before proceding that way, this might be the place to clarify the use of rate 

equations in describing the quantum jumps, since earlier we had been somewhat puzzled 

by the role of coherent superposition states. It is correct that an ideal coherent 

laser field will drive an atom into a state of superposition, and off - diagonal 

elements of the statistical operator don't vanish. But this euperposition or phase 

memory will only last on the a time scale of the relaxation time, since the event 

of spontaneous emission prepares the atom in its ground state and the phase infor- 

mation is completely lost. It will be established again, without relation to the 

previous coherence, in a Rabi cycle and will be lost again in a subsequent spon- 

taneous emission act. For an ensemble of atoms, as described by the Bloch equations, 

we always prepare a macroscopic number of atoms in a superposition state, which is 

responsible for the macroscopic coherent polarisation. Individual atoms drop out 

from this collective coherent state in a spontaneous emission event~ and are brought 

back in a Rabi period by the action of the laser field. 

Since we are dealing with a stationary ensemble, dissipation is inevitable in 

order to establish this state. Stationarity is only reached after many relaxation 

times, and the phase memory has decayed long before. We conclude from here that the 

distinction between mixed states and pure superposition states, intuitive to some 

extent, was somewhat artificial and misleading in this context, because it did not 

account for dissipation, something that is vital for the observation of fluorescence. 

Therefore we expect that this distinction is not really essential, and the presence 

of coherent Rabi oscillations will only alter the picture quantitatively, but the 

basic conclusions will simply carry over from the picture of a rate process. To 

support this view, we have calculated the two-photon correlation function for co- 

herent driving, by diagonalizing the 9 by 

and find typically the behaviour sketched 

three level correlations are compared. As 

9 matrix of the three level Bloch equations 

in Fig. 4, where the two level and the 

expected, the two traces coincide over the 

short time period where anti-bunching and Rabi oscillations occur but deviate later. 

The "hump" again is clearly visible and indicates the appearance of dark periods. 

3. Photon Countinq Statistics 

One way to determine the statistical properties of light is to count the number 

of photons that fall on a detector in a given time interval T. Due to the discrete- 

ness of the photon counting events, the results will fluctuate randomly and dis- 

play Poissonian statistics. This is the randomness introduced solely by the de- 

tection scheme. The fluctuations of the field intensity itself will be superimposed 
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and cause an additional broadening of the counting distribution. The intrinsic sta- 

tistical properties of the light field have to be derived therefore from the de- 

viation of the actual counting distribution from the ideal Poissonisn one. A co- 

herent field with its stabilized intensity is Poissonian, and one might expect that 

additional fluctuations of the intensity can only result in further uncertainty and 

therefore in broadening. This is correct when we describe the field in terms of 

cl&ssical electro - dynamics. However, the fluctuations characteristic of quantum 

fields can either broaden or squeeze the statistical distribution from the ideal 

Poissonian result, a feature that is not easily understood on intuitive grounds. The 

Sub - Poissonian statistics of resonance fluorescence is a unique quantum effect 

(2),24) which has been observed experimentally (25,10). 

The quantum mechanical photon counting distribution has been derived by Glauber 

(26) and by Kelley and Kleiner (27) from a first principle consideration of the 

source, the emitted field, the detection process and their mutual interaction. This 

result generalizes naturally the classical photon counting distribution, derived 

previously by Mandel (28,29): 

A I m e  X V(n,T) -" ~ ~ T -~, (T T) p (-~ T) 
we introduced the operator -F (T}: ~IIZI'I " '  ~ ~'l%~@i ~ i  'i~is 

i 

where the spontane- 

ous radiative life time of the excited state, ~ the quantum efficiency, and 

guarantees time and normal ordering of the operator products. In the present form, 
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this result closely resembles the classical one, where l(t) is the time averaged in- 

tensity, and the ensembie average is carried out over the ciassical fluctuations of 

the field. The compact form of the,quantum resuIt is lost instantIy when we attempt 

to caicuiate the distribution for any practical probiem, since in order to compiy with 

the ordering prescription, the exponential must be expanded and the muItiple time in- 

tegration must be turned into iterated convolutions. This demonstrates oIeariy that 

the photon counting distribution comprises the entire hierarchy of multiple photon 

correiation functions. 

As in the previous chapter, the properties of the field will be traced back to the 

properties of the emitting dipoles. In this way we can determine normally ordered 

correlation functions of arbitrary order from the general solution of the corres- 

ponding Bloch equations: (14) 
tm 

The correlation function of order n+l e.g. assume the following form: 

where ~. i s  the s ta t ionary  populat ion of  the f luoresc ing  exc i ted s ta te .  For con- 

venience, we will use the abbreviation: 

Is 

The convolut ions over the mu l t i p le  product of h ( t )  i s  most convenient ly  car r ied  out 

by using the too l  o f  Laplace t ransformat ions,  and we f i nd  
"r 

@ 

where T(n,z) is given by: 

~s 1 Z ) 

and 

The structure of ~(n,z) suggests that the general photon distribution ~(~ can 

be obtained by simple differentiation of the zero count probability- 
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I t  is  not d i f f i c u l t  to show that  the photon counting d i s t r i b u t i o n  in  the general de- 

f i n i t i o n  above has the fo l low ing  proper t ies :  

i )  W(n,T) is normalized 

>_ = 

and determines the average counting proper t ies .  

I 

ii) In the limit of a vanishing counting interval T--~ O, the probability of no 

event approaches unity while the n count probability must vanish: 

V ( .  T )  = 
- r - - ~  0 ' 

iii) The probability of observing precisely n events in an ever increasing interval 

must vanish : 

k / ( . , ' r )  = o 
"T--~ (m 

The goal of our present considerations is to show on the basis of a first principle 

calculation that the fluorescence from Oehmelt's shelving scheme, while driven in 

steady state, is intermittent and displays long periods of darkness. ]his is to be 

distinguished from a continuous fluorescence signal ~ith only Poissonian fluctu- 

ations about the average value. If the fluorescence is interrupted by dark-periods 

of the order of the lifetime of the metastable level, say 1 second) then for a sa- 

turated three level system we expect that in every third experiment we observe no 

counting events, as long as the collection time T is'kept shorter than a second. 

On the other hand, if fluorescence would be continuous with an average counting rate 

of typically i0~8 per second it would be extraordinarily improbable to see no event 

during a period of one second. This follows directly from the derived counting sta- 

tistics, when we assume for a moment that I(]) is a constant c-number. For a 

Poissonian process with average <n> = i0^8 the probability of seeing no event is: 

o,T= s c ) = e p(- 10 a)  
which for  a l l  p rac t i ca l  purposes is  i d e n t i c a l  to zero. In order to present an un- 

biased approach, we must set up the ca l cu la t i on  in  a way that  the resu l t  may l i e  

anywhere in th i s  wide range of  p r o b a b i l i t i e s ,  This requires that  we do not re l y  on 

s per turbat ive approach around the average i n tens i t y  or zero i n t e n s i t y  by an approp- 

r i a t e  expansion of  the exponent ia l ;  The ser ies in n - photon co r re l a t i on  functions 
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that would be generated thereby cannot be truncated at any low order, since the 

correlations tend to become negligible only when its order becomes large com- 

pared with the average number of counts. For the present case this wouid require 

the calculation of the first iO ̂ B correlation functions. For this reason we will 

simplify the model to be used to such an extent that we can derive the statistics 

in an analytical and nonperturbative way. 

Under the assumption - as above - that the system can reasonably be described 

by rate equations, and in the limit of strong driving of the allowed transition, it 

is possible to derive the counting probability in closed analytical form. For the pro- 

bability of darkness over an interval T we find: (14) 

= e , 2 e  / 
and we can immediately decide whether this result predicts quantum jumps or not. 

For an intermediate time interval T : 
0 

_1 . t  -1 

the probability of no events is found to be: 

=O, To) - 

which in case that we saturate also the forbidden transition, leads to the expected 

probability : 

V ( n - - O ,  To) = 

This result is only consistent with the picture of an intermittent fluorescence 

signal and not with the Poissonisn statistics of continuous fluorescence. The com- 

plete time dependence of [~/~=~T ) is plotted in Fig. 5. The curve starts at the 

expected value of one for vanishing counting intervals and then drops rapidIy over 

a period of the lifetime of the dipole allowed transition. This drop would continue 

if it would not be for the metastable state. The shelving becomes evident in this 

plot through the plateau in the intermediate time regime. The height and the width 

of the plateau indicates the probability of occurence and the length of the dark 

periods. As the saturation parameter S = R 2 / (R2+ ~Z) is increased in the plot, the 

dark periods become more and more frequent and the plateau rises, while their 

duration decreases, due to the induced downward transitions that reduce the survi- 

val time in the forbidden state. Above a time interval of the order of spontaneous 

life time of the metastatic state, the probability drops rapidly towards zero, 

indicating that longer dark periods become excessively improbable. The probability 

for observing a given finite number of counts is easily derived by mere differenti- 

ation. Since only the second term in ~(K=o~ depends on ~,~, only the rapid time 
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constant ~a enter the probability W ( n, T ) for n ~ O: 

i . e .  a Po isson ian  d i s t r i b u t i o n  w i t h  the  e x c e p t i o n  o f  t he  ze ro  count  r a t e .  Th is  means 

t h a t  du r i ng  the  emiss ion  p e r i o d s ,  the  f l u o r e s c e n c e  i s  w e l l  desc r i bed  by Po i sson ian  

s t a t i s t i c s .  A q u a l i t a t i v e  p l o t  o f  t he  d i s t r i b u t i o n  i s  shown i n  F i g .  6. 
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Probability of observing no events in s time interval T. The parameter is the sa- 
turation rate of the forbidden transition. For strong saturation the plateau rises 
up to the expected value of i/~. 

It may be illustrative to note that the probability of observing a single or a few 

counts in a period T is extremely small, since this would correspond to a marginal 
o 

event~ where precisely the last photon of the previous period, or the first, but only 

the first of the next period falis into the counting interval. The derived distri- 

bution demonstrates this c~early: 

W(.=,,T-lS.:) = 10 e x F ( - l o ' )  

1/3 

WIn,T} 

=0 L-n-1 

I-IO~I 

nJlO @ 

F lg .  6 . !  -! 
Photon coun t i ng  d i s t r i b u t i o n  W(n,T),  s c h e m a t i c a l l y  f o r  ~ = lOm8 see, ~L = T = 1 sec. 
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which again can be identified with zero for any practical purposes. 

The dark time is easily determined experimentally. Since it varies largely about 

its average value, it may be interesting to derive also its statistics and compare it 

to the experimentally determined histograms. Obviously, the zero count probability must 

be associated in some way with the probability P (T) of observing a break in the 

strong emission of length T. In Fig. 7 we derive in an intuitive way P ( T ) by the 

following arguments: 

i )  

i i )  

All events where the dark time is larger than the chosen interval T contribute 

to W ( n,T ),~=0 . 

When we vary T--JwT + dTjthe change of probability: &V 
~ ( n , T ,  a T )  - ~ / ( n , T )  ~ "  ~ " 

i s  a measure for  the p r o b a b i l i t y  of  observing a l a s t  or f i r s t  event in  con- 

nect ion wi th  a fo l l ow ing  or previous per iod no events l a s t i n g  fo r  T seconds. 

This is  ind ica ted  in  the middle of  Fig.  7. This i s  obviously not yet the quan- 

t i t y  tha t  we want to  compare wi th  experiment, since the associated dark per iod 

is still shorter than the actual one. 

T 

T 
~(.=o,T ) 

I 

t 

T " ,  ~T = 

Fig. 7 

Dark time probability P(T)dT is related to W(n=O,T) through differentiation as 
sketched in this plot. 
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iii) A second variation in the time interval.properly normalized, however, leads us 

to thedesired probability density of observing a period of darkness sandwiched 

between two emission events: 

I - , . d ' k / < . : o , v )  
14 (n:o,-r.o I dT z 

This quan t i t y  i s  pos i t i ve ,  due to the monotonous property o f  W(n=O~T). I t  contains 

the probability of darkness between individual photon emission events during the 

bright periods, as weIi as the probability of iong dark intervals; i.e. it contains 

the complete information that couid only be obtained with a photo multiplier of 

arbitrary time resolution. This probabiIity aliows us to illustrate the intermittent 

statistical fluorescence signal, by drawing random numbers from a computer, which 

are distributed according to the caicuiated density. Then for any given number we 

dram a line of unit length that is separated from the previous iine by a distance 

proportional to the last random number. So most frequently smali numbers are drawn, 

and the lines lie densely together, until a large number creates a gap, the dark 

period, see Fig. 8. This illustrative plot has first been de¢ised by ZolIer et.ai. 
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Fig. 8 

Simulation of the fluorescence from a three level system by drawing random numbers 
according to the dark time distribution P(T). This simulates an experiment with 
arbitrary time resolution. 

using a different but equivalent theoretical basis. The plot would represent a ty- 

pical experiment if the detector wouldn't have a dark time of itself and wouldn't 

average over a finite time interval, lhe averaging can be done also numerically and 

a more realistic signal results as shown in Fig. 9. In the meanwhile, experiments 

at different places have observed the quantum jumps independently (30-33). The first 

observation has been made by Dehmelt, who almost I0 years ago has first suggested 
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The same simulation as in Fig. 8 but with a finite Lime resolution. 

this experiment. Qualitatively this result looks very much like the simulated plot, 

quantitatively a comparison is not that easily available, since the experiment had 

been made on a more complicated level structure. 

4. Conclusions 

In classical mechanics it does not cause any intrinsic contradictions when we 

describe states of a mechanical system and its Lime evolution, without considering 

explicitly the way we interact with that system through a detection device. For a 

quantum mechanical system this is fundamentally different. It does not mean anything 

to say that an electron is in any specific state, or has jumped to a different one 

at a given time, without considering the measuring process that provides this in- 

formation. As in a single atom fiuoresoence experiment, we have no way to deter- 

mine the dynamics of an isolated electron, what it is doing when we do not look st 

it. It is the fluorescence signal, the counting event, the click in the detector 

that indicates that the electron has returned to its ground state, lhie event is 

discrete, and occurs at a given time. It is meaningless to consider the question 

whether the electron dynamics by itself determines the discreteness or the photon 

emission process or eventually the detection mechanism in the photon multiplier. It 

is the entire combined physical system that displays this feature, end there is no 

way to dissect the quantum system and separate it into the basic process and the 

measurement. In this sense, the discreteness of the quantum jumps and the discrete- 

ness of the photo effect has the same origin. 
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What has revived this idea again after all these years is the progress in ex- 

perimental technology which now has made it possible to perform the eseentiai step 

and to do experiments on singie atoms or moIeouIes. This sIiows one to Iook at in- 

dividual events emitted from a singie particle and not only on the average be- 

hsviour of a large ensembIe. In finaliy detecting these single events, the sheiving 

idea of Dehmeit has been essential, since it provides a simpie way of amplifying the 

weak microscopic signal that indicates the quantum jump up to a macroscopic scaIe. 

In a way this is a very transparent and simple exampIe of a quantum mechsnicaI 

measurement, where a microscopic signal i.e. the photon from the weak transition 

is amplified in order to move a macroscopic pointer, the position Of which we can 

read off, without interfering any more with the microscopic system. It is well-known 

that this quantum mechanicsi ampiification process inevitabIy introduces noise, 

which limits the precision of our observation, in agreement with the uncertainty 

principIe. This is rather obvious in this example. 

It was not the aim of this paper to get involved again in the old controversy, 

or to say anything new about the electronic quantum jumps. The aim was to des- 

cribe the statistics of the light field, emitted from a continuously driven three 

level system, andto determine whether the intuitive picture, based on the simple 

quantum jump concept, leads to the correct prediction for the experiment or not. In 

order to do this, the theoretical approach had to be free from any ad hoo assump- 

tions that would introduce the quantum jump concept through the back door. 

In our calculation of the photon statistics, we have demonstrated that the dis- 

continuous jumps in the fluorescence are directIy related to the angular momentum 

statistics of the n levei atom, and are a basic feature of the quantum system. It 

may be worthwhile to stress that the description of the jumps does not require to 

introduce an additionai time constant that would not aiCeady be present in the 

atomic dynamics and the detector response. Even with a detector of arbitrary time 

resolution, the occurence of a jump can never be determined to a higher accuracy 

than the time between individuai emission events. And even this is oniy an average 

number. If the time after the Iast event gets longer than the average time, then 

this can indicate an excessively improbabie event, and we are still in the bright 

period. It is only when the darkness iasts for many spontaneous life times that we 

have to conciude finally that the eIectron is shelved and darkness wilI Iast for 

much longer, i.e. the lifetime of the metastable state. 

The quantum jumps in the fluorescence signal are a unique quantum phenomenon, 

which is characteristic for a single particle system. Its satisfactory theoretical 

description in a simple and transparent model, together with the beautiful experi- 

mental verification of the intermittent fluorescence makes this phenomenon a key 

problem in quantum mechanics, which is also of great pedagogical value for the 
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understanding of fundamental processes, and the quantum mechanical measurement. 
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SPONTANEOU~ .EMISSION IN (;O.~.EI.NED SPACE 

by 

S. HAROCHE 

Ecole Normale Sup~)rleure (Paris) and Yale University (New Haven) 

The quantum noise of the electromagnetic field usually sets an 

intr insic l imitation to the precision of any optical experiment, tnterferometrtc 

methods are essenttal|y based on the determination of the phase of a quasi -  

monochromatic f ield, whose ultimate fluctuations are of quantum nature, 

Similar ly,  spectroscopic measurements of atomic energy intervals have their 

precision ult imately limited by the natural width of the excited electronic 

states. This width reflects - through the Hetsenberg uncertainties- the 

spontaneous decay of these states due to their coupling to the quantum 

fluctuations of the vacuum f i e l d . . .  It has recently been recognized however 

that the effects of the vacuum field noise can be greatly reduced In some 

physical observations and during the last two years, several experiments 

have demonstrated the reduction or even the nearly complete cancellat ion of 

photon noise effects. These experiments fall Into two categories : squeezed 

states generation experiments [J-] make use of non- l inear  optical processes 

in order to decrease the quantum noise on one phase of the field -a t  the 

expense of the quadrature component on which the noise is increased. In 

Cavity Quantum Electrodynamlcs experiments [ z - s ] ,  atomtc systems are 

confined tn small cavit ies In whtoh the mode distribution of the vacuum field 

is strongly modified with respect to its free space value, entail ing Important 

alterations of the radiative properties of the atoms. The quantum noise 

resonant with the atomic transition can be either suppressed or increased, 

leading to either inhibition or enhancement of the excited states spontaneous 

decay. 

Recent squeezed state generation experiments are discussed in other 

contributions to these proceedings. In this paper, t will discuss spontaneous 

emission modif ications induced by a cavity, describe a recent experiment in 

which the suppression of spontaneous decay has been observed for the first 

time on an optical transltlon and discuss some implications of this effect. 
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S~ontaneous emission In a cavity : theoret ica l  backaround 

The change of spontaneous emiss ion In a cavi ty is a quite s imple  

effect,  which can be understood by an analys is of the mode densi ty of the 

vacuum radiat ion f ield surrounding the atom [ e - 7 ] .  An atomic excited state 

l e  > undergoes spontaneous decay towards a f inal state I f  > because the 

system can radiate a photon in any mode of the vacuum f ield surrounding 

the atom. The probabi l i ty  1" of photonemlss lon per unit t ime Is s imply  given 

by the Fermi -Go lden  rule : 

2Tr z 
r" N --K-'- 1< g l ~ l e  >1 • f~0~. p(o~) (Z )  

In Equ. ( ] ) ,  < g l ~ l e  > is the matr ix e lement  of the atomic dipole operator  

J~ between the ini t ial  and f inal states, f~¢o measures the vacuum field 

f luctuat ions per mode at the f requency ¢0 of the atomic t ransi t ion and p(¢o) is 

the density per unit volume and f requency of f inal photon states with the 

polar izat ion of the atomic t ransi t ion.  In free space,  p(¢0) is Isotroplc : 

(pc(C0) = ¢0Z/rrZc3). If the atom happens to be conf ined In an e lec t roma-  

gnet ic cavity, the boundary condi t ions at the walls modify the mode densi ty 

and accord ing ly  change the emiss ion rate. Of par t icu lar  Interest is the case 

of an atom in a cavi ty so small  that p(Cav)(~0) = 0 (cav i ty  beyond cu t -o f f ) .  

Then the f ield quantum noise is total ly suppressed at the re levant  f requency 

and the excited atomic state survives for ever [ 7 ]  - a t  least In p r i n c i p l e . . .  

To be more speci f ic ,  we now discuss the s imple si tuat ion of an 

atom radiat ing between two plane para l le l  mi r rors  separated by a gap d. 

The calculat ion of the mode densi ty  In such a s t ructure ts a text book 

problem of c lass ica l  e lec t romagnet ism.  Figure l a )  represents  the mode 
( ca r )  (cav)  

densi ty Per (o}) and Prr (¢0) cor respond ing to f ie lds having at the 

midplane posit ion z=d /2  an e lec t r ic  f ield respect ive ly  para l le l  and normal  to 

the cavi ty mi r rors  (¢ and rr polar izat ions respec t ive ly ) .  The var ia t ions of 
(cav) (cav)  

p~ and Prr versus ¢o are compared to the one of the free space 

mode densi ty Pc, shown by a dotted l ine on the same f igure.  The most 
(cav)  str iking feature is the cancel la t ion of Pa (0)) for (o below the cu t -o f f  

(cav)  f requency ~o=rrc/d, whereas P~r (¢0) remains non-zero  clown to u=O and 

Is actual ly  larger  than pc (c )  for 0J < 1 .5  ~0 o. These features have a very 

s imple explanat ion. The modes with an e lect r ic  f ield paral le l  to the mi r rors  

must present a vanishing tangent ia l  e lect r ic  component  at the meta l l ic  

boundar ies,  which requi res the exis tence of at least one standing wave 
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EIgure 1. : a) Mode density p(o~) versus = In a cavity made of two plane 
parallel mirrors separated by a gap d. Density evaluated 
at mldgap position z=d/2;  full l ine : ¢T polarization; 
dashed line : rr polarization. For comparison, the free 
space mode density is represented in dotted line. 
b) Ratio r . (cav) / [ ,o  versus frequency (0: full l ine : 
spontaneous emission in polarization (7: dashed line : 
spontaneous emission in polarization Tr 

between z=O and z=d, I .e .  d ;= x / 2  or equivalently {0 > 0) o. The modes with 

their  e lectr ic field normal to the mirrors, on the other hand, correspond for 

(o=0 to the electrostat ic conf igurat ion of a parallel plate capacitor.  These 

modes thus exist down to zero frequency. The l inear variation of p~Cav)- (=) 

versus ¢o for o~ small has also a simple Interpretation. The only modes 

surviving in the cavity below ~ = =o have their wave vector ~ paral lel to the 

mirrors. The ~ vector associated to a f requency = have a length talc and, 

In phase space, their tips belong to a ctrcle of radius u / c ,  whose length is 

proport ional to ~ /c .  In free space on the other hand, the ~ vectors 

corresponding to f requency = have their tips on the surface of a sphere,  
(cav) 

whose area Is proport ional to ¢oZ/c z. The mode density PTr (¢o) Is thus 

larger than po(~O) by a ratio proport ional to c/oJ, h e. to P,. Actually, this 
• (cav) 

dimensionless ratio Is 3x /4d  t P T r  ( u ) / p o ( ~ )  = 3,~o/4d = ] .  5 for the cut -  

off wavelength x o = d / 2 ) .  

Accord ing to the above discussion, the spontaneous emission rate 

I-(cav) of an atom located at mldplane between the two mirrors Is equal to 
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(car )  
the free space rate r o multiplied by the factor Pet (ca)/po(ca) If the 

atomic transition is polarized parallel to the conduct ing surfaces and by the 
(cav) factor p~ (ca)/po(ca) If It Is polarized perpendicular  to them. Figure ]b  

shows the variations of these ratios versus =. For ~ polarized transit ion, the 

spontaneous emission rate Is totally suppressed when ca < cao. It undergoes a 

sharp increase at ca=Uo and other resonances occur  for ¢0=3¢0o, 5cao... For 

~r-polarlzation, the emission rate is enhanced with respect  to F o for ca ( cao, 

being equal to "t. 5 F o for ca=cao" 

The spontaneous emission rate alterations are important only for ca 

smaller than or of the order of a few cao" For larger atomic f requencies,  or 

equivalently for larger cavity sizes, F(~ car)  and F~ cav) rapidly become 

very close to c o. These cavity Induced effects thus require cavities whose 

sizes are of the order of the atomic wavelength. 

For the sake of simplicity, we have restr icted this analysis to atoms 

located at z=d/2.  At other locations in the gap between the mirrors, the 

mode density also undergoes resonances for ca=2ca o, 4cao... ( the co r res -  

ponding modes have a node at the mid plane position and their contribution 

thus does not appear on Figure 1). The Important point for our forthcoming 

discussion Is that the field amplitude In the cavity does not depend upon z 

for ca < ~o, so that all the conclusions derived above remain true even If 

z;~d/2, provided ca < cao : the dramatic effects of spontaneous emission 

Inhibition ( for  cr polarization) and enhancement  ( for  Tr polarization) are 

position independent in the cavity when ¢0 < ¢0 o, The above discussion has 

assumed perfect mirror conductivity. Small cavity losses have the effet to 

smooth the sharp resonances of F (cav ) / t "  o and result tn a small non-zero  

radiation rate In ~-polar lzat lon for '¢~cao' 

I have chosen here to discuss cavity Q .E .D .  effects according to a 

field mode expansion analysis, following the point of view of other 

theoret ical studies [ a ] ,  from which most of the above discussion can be 

derived, although not always very directly. This approach has the advantage 

of emphasizing the photon noise point of view and clearly demonstrates that 

the cavity effectively cuts down or amplif ies the vacuum field noise 

components resonantly coupled to the atom. Another equivalent point of view 

chooses an electr ic Image approach [~ ]  : the atom In the cavity is 

descr ibed as a dipole interacting with its own sel f - radiat ion field and with 

the field reflected from the mirror which Is viewed as being radiated by 

image dipoles induced In the cavity walls. This alternative model descr ibes 



145 

the atom + cavity radiation process as an interference effect between the 

f ields radiated by the atom and Its Images. It yields of course exactly the 

same conclusions as the mode expansion model. We will not discuss it any 

more in this paper. 

_Cavity O, E.D. experiments in the microwave dDrnaln 

The first evidence of radiative rate modif ications near metal l ic 

boundaries came from f luorescence measurements performed on complex 

molecules radiating near a surface [±o] .  I will not discuss these early 

experiments here and I will restr ict  my analysis to the more quantitative and 

more precise experiments performed recently on Isolated and simple atomic 

systems in cavities. These experiments have to overcome the diff iculty of 

confining excited atoms In metall ic structures whose dimension Is of the 

order of the atomic transit ion wavelength. One solution consists In studying 

Rydberg atomic states radiating on long wavelength cent imetr lc or ml l l lmetr lc 

transitions. The cavities are then fair ly large and atoms moving at thermal 

velocit ies stay in these cavities during a time varying from a few 

microseconds to a fraction of mi l l isecond, depending upon cavity geometry. 

The first experiment of this kind [ z ]  has been carr ied out at Ecole 

Normale Superieure in 1983 : we have observed the enhancement of the 

spontaneous emission rate on the 23S to 22P transit ion of Sodium atoms at 

a frequency 0~/2rr = 340GHz (X ~ 0.88mm transi t ion) .  Atoms crossing the 

cavity were excited in a cm-s ize cavity operating in a h igh ,order  mode, 

which was resonant with the atomic transit ion. The cavity was of Fabry-Perot 

type, with one plane and one spherical mirror.  This configuration -s l ight ly  

different from the simple blplanar geometry discussed above- is much more 

convenient for the observation of resonant enhancement of spontaneous 

emission rates. The semt-cofocal  Fabry-Perot structure has the advantage 

of considerably increasing the density for transverse electr ic field modes 

resonant with the cavity. In such a configuration, It is more appropriate to 

analyze the mode density in terms of the cavity quality factor Q. If the cavity 
(cav) has a volume "U ' ,  p~ (¢0) is at resonance equal to Q/~)IJ" (one mode 

per frequency interval ¢~/Q and vo lume 'U ' ) ,  tt is thus enhanced with respect 

to free space by the factor ~ ~SQ/1J'cS ~ ;~SQ/'Lr'. Thus, for high Q's and 

even if the cavity does not operate in its lowest orders ('U" >> As), large 

enhancement factors can be obtained. In our experiment, Q was of the 

Order of 10 s and an enhancement of about 500 was achieved, much larger 
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than the maximum factor 3 in the blplanar configurat ion (see Figure l b ) .  

The free space spontaneous emission rate F o ~ 150S -j" was Increased to 

F(~ cav)-  ~ 8, 104s - j ' .  

The first observation of spontaneous emission inhibit ion In the plane 

mirror cavity conf igurat ion was carr ied out at M . I .T .  by Hulet, Hilfer and 

Kleppner [4 ]  In ]985. The cavtty was made of two plane aluminized mirrors 

separated by a d=0.23mm gap. Cesium atoms were prepared in a high 

angular momentum "circular" Rydberg state [ ~ ]  with principal quantum 

number n=22, before enter ing in the cavity. The Rydberg electron was then 

in a plane, or iented parallel to the mirrors so that the electr ic  dipole of the 

atomic transition was o- polarized. The atomic f requency (Rydberg n=22 -, 

n=2] transit ion at ~ 663GHz) was tuned just below the cavity cut-of f  

f requency ¢0 o = c~/d by Stark effect Induced In an external static electr ic 

field. The atoms were crossing at thermal velocity the 12cm long cavity In a 

time of about 0 .5ms,  I.e.~ of the order of the natural life time of this 

transition in free space (corresponding to F o ~ 2000S-~).  The absence of 

excited state decay during that time (monitored by detect ing the atomic state 

after the cavity crossing) was the evidence for a nearly complete 

suppression of spontaneous emission In the cavity. 

Rydberg atoms are very convenient for these cavity Q .E .D .  

experiments because their very weakly bound electron spontaneously emits 

long wavelength radiation. The "geonlum" system, weakly bound state of an 

isolated electron in a Penning trap constitutes another choice system for 

such studtes. By measuring the damping of the cyclotron motion of an 

electron in such a trap, Gabrtelse and Oehmelt at the University of 

Washington I s ]  have observed that for some values of the magnet ic field the 

cyclotron damping occured slower than in free space, whereas tt was faster 

for other magnetic field va lues . . .  In this expertmeni,  the trap e lectrodes 

themselves made a cavity with elgenfrequenctes close to the cyclotron 

frequency (~ 164GHz corresponding to x ~ 2ram). By slightly changing the 

field strength, the electron frequency was swept across the cavity f requen-  

cies, inducing ei ther cavity enhancement  or inhibition of the spontaneous 

emission rate. In this experiment,  the free space rate F o ~ ]2s -J" was 

Increased to about 30s -J- or decreased down to 3s -~.  This observat ion, 

made in ]985,  preceeded the MIT group demonstrat ion by a few months, 

but its quantitative analysis is somewhat more diff icult because of the 

complex cavity geometry. 
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Su~Dresslor~ o f  saonteneous emtssioD at oattcal freauenctes 
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F-Jg. 2 : a) Cesium energy levels 
relevant to the optical spontaneous 
emission inhibition experiment. 
b) Close-up showing the hyperflne 
structure of the 5Ds/z and 6P3/z 
states 

pig. 3 : Experimental set-up 
of the optical spontaneous 
emission inhibition experiment. 
The insert shows a scanning 
electron microscope picture 
of the 1. lp.m mirror cavity 
exit. 

In all these microwave Q, E.D. experiments, the spontaneous rates 

to be modified by the cavity were quite small (10 to IOns -~" range),  the 

quantum noise being indeed very weak in this frequency domain. In order to 

demonstrate the prospects of cavity Q.E .D.  for an effective quantum noise 

SUppression, it was important to extend these experiments to much higher 

frequencies, up to the optical domain where spontaneous decay is a much 
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s t ronger  effect,  becoming a real l imi tat ion to spect roscop ic  resolut ion.  The 

problem is then to real ize m ic ron-s ized  cavtt les and to conf ine excited atoms 

in these st ructures dur ing a t lme exceeding several  natural  l ife t imes. Such 

an exper iment  has very recent ly  been carr ied out at Yale Universi ty I s ]  on 

excited atoms sent between two plane parallel mir rors  spaced by a ] ,  ]p.m 

gap. 

The exper iment  has been per formed on the 5Ds /z  state of Ces ium,  
_.11. 

which has a natural  l i fe t ime T o = -r" o = ] .  6/~S, The energy levels re levant  

for the exper iment  are shown on Figure 2a. The 5Ds /z  level decays with a 

branching rat io "1 to the 6P3/z  level ,  emltt tng 3.49/~m wavelength radiat ion 

which Is cu t -o f f  In the m ic ron -w ide  cavity. For the exper iment  analys is ,  it is 

important  to descr ibe the hyperf lne st ructure of the levels (shown In Figure 

2b) .  Due to the coupl ing between the e lect rons and the Cs nuc lear  spin 

1=7/2, the 5Ds /z  level Is spl i t  Into 6 hyperf ine levels (F = ] to 6) and the 

f inal 6P3/z  state into 4 levels (F '  = 2 to 5) .  Each of these levels is made 

of 2F+] magnet ic  sublevels IF,  M F >, I F ' , M  F, ) ,  which are e lgenstates of 

the total angular momentum project ion F z along the quantlzatlon axis 

(chosen as the normal to the m i r ro rs ) .  The radiat ion rate FF, MF of each 

I F, M F > sublevel of the 5Ds/z  state can be divided into a ~ and a rr 

cont r ibut ion,  cor responding respect ive ly  to the emtsslon of photons polar ized 

paral le l  and perpend icu lar  to the mi r rors  sur face : 

-- .(~) .(,T) 

" F , .  F ÷ 
( 2 )  

These contr ibut ions are associated respect lve ly  to AM F = ±]  and 

z~M F = 0 t ransi t ions to the f inal 6P3/z  F'MF, states (¢ and tr photons car ry  

respect ive ly  ] and 0 units of angu lar  momentum along the quant izat lon 

ax is ) .  In free space (o r  tn a large sized cav i ty ) ,  the total emiss ion rate is 

the same for al l  substates ( the vacuum fluctuations are then Isotroplc • 
( f ree space) 

FFM F = F o ) .  Between two Ideal mi r rors  with a spacing 

d < ,k/2, we expect on the other hand : 

F (car's) = 0 ; F (car'=) 3A _(=) = (3)  

(In our d = l . l p . m  wide cavity,  3A/4d = 2 . 3 8 ) .  Each IF,  M F > substate Is 

thus expected to have a modif ied emiss ion rate : 
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F(cav) = 3>` .(.) 

which depending upon the rat io of the rr tO cr emlss lon channels  for this 

par t icu lar  state can be e i ther  smal le r  or la rger  than F o. Of specia l  in terest  

are the F = 6, M F = ±6 maximum angular  momentum states which decay 

only via ~r t rans i t ion (see  Figure 2b) .  The radiat ion rate for these states ts 
( ca r )  t '6 ,±6  = 0. In genera l ,  the radiat ion rates can be readi ly  determined 

f rom equat ion (4)  and standard angular  momentum a lgebra y ie ld ing 

£'FMF (rr) fo r  each sublevel .  We find : 

z z 
r(Cav ) = 3x 36-M F _(cav) 3>, 60-Mp 

z ( s )  
r ( c a v )  _ 3>  ̀ 1090 + ~ ,  r 
4,M F 4d 3850 o 

The exper iment  being descr ibed in detai ls  e lsewhere i s ] ,  I wil l  recal l  

here only its main features. The se t -up  is sketched on Figure 3. Cesium 

atoms are produced In an atomic beam by an oven, They are sent through 

a 1. 1/zm wide 8ram long cavi ty made by two f lat gold coated blocks stacked 

against  each other with thin Nickel foil spacers between them. The 5Ds /z  

level preparat ion is achieved by a c .w .  laser  beam ( l ase r  n ' l )  tuned to the 

6S±/z  (F=4) - 7P3/z  (F=5)  t ransi t ion.  About 13% of the atoms exci ted in 

this way are t ransfer red by spontaneous cascade Into the 5Ds /z  level just 

before enter ing into the mi r ro r  gap. The crosstng t ime of the gap lasts 

about 20/zs, t .e .  ~ 13 natural  l i fe t imes of the 5Ds /z  state. In f ree space,  

only ~ 2 atoms in 10 s would survive In the i r  excited state this c ross ing.  At 

the mi r ro r  exit ,  a second c .w .  laser  beam ( l ase r  n'2] exci tes the atoms 

remain ing tn the 5Ds /z  level up to the 26F Rydberg state,  which ts 

subsequent ly  f ield ionized,  the resul t ing e lec t rons being detected by a 

channel t ron e lect ron mul t ip l ie r  (CEM) .  The laser  2 f requency can be tuned 

across the hyperf lne structure of the 5Ds /z  level and the resul t ing Rydberg 

e lectron s ignal  Is recorded versus Its f requency.  The obtained spect rum 

thus y ie lds the relat ive populat ions of the var ious 5 0 5 / z  levels as they have 

survived the cavi ty cross ing.  This spectrum-recorded with laser  1 in posit ion 

B upstream the mi r ror  cavity Is compared with the same spectrum obtained 
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when laser ] is moved In position A downstream, I. e, In superposit lon with 

laser 2, In this conf igurat ion, we detect Cs atoms which have crossed in 

the ground state the cavity and which have been excited into the 5Ds/z  

level and immediately detected. We thus get a normalization signal which 

provides the relative populations of the 5 D s / z  F hyperf lne levels as they are 

actually prepared by the 6S~ /z  ~ 7P3/z --* 5Ds /z  stepwlse process. 

Spectra with laser 2 respectively In position A and B are shown In 

Figure 4, Figure 4a shows that the excitation stage prepares atoms In 

hyperf lne levels F = 4, 5 and 6 (arrows # 1, 2, 3) .  Of these only atoms tn 

hyperf ine level F = 6 have their  spontaneous emission Inhibited enough to 

survive the gap crossing and to yield a large absorption signal with laser 2 

tn position B (arrow # 3 in Figure 4b) .  From an analysis of these data, we 

conclude that the spontaneous emission process is essential ly suppressed in 

the gap for the F=6, MF=±6 substates (we have to correct  for excited state 

decay before entering and after exiting the gap; more over only ~ 68% of 

the atoms In the F=6 level are al igned In the MF=±6 sublevels).  For all the 

other substates (F=6, MF<5 or F<6), the cavity modified life times remain 

short enough so that the atoms do not survive the gap crossing In their 

excited state. 
i 2 3 
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The magnetic dependence of the signal provides a clear evidence 

that we are actually observing an anlsotroplc vacuum field effect in the 

cavity. In order to observe the absorption peaks of Figure 4b, it was 

necessary to apply a magnetic field of about 2Gauss along the direction 

normal to the mirrors. This field prevented the M F = ±6 states from being 

mixed with shorter lived M F < 6 levels by the stray laboratory field having a 

non zero component along the  cavity mirrors. The magnetic mixing effect ts 

i l lustrated tn Figure 5 which shows the excited atom transmission signal as a 

function of the angle e between the directions of the applied magnetic field 

and the normal to the mirror ( the applted field being much larger than 

the stray lab- f ie ld) .  When ~ Is along the mirror axis (e=0 or e ~ "180°), a 

large transmission Is observed. For ~ at an angle with the normal to the 

mirrors, the magnetic mixing becomes Important and a!l the magnetic 

sublevels acquire a life t ime short enough that they do not survive anymore 

the mirror gap crossing. The solid line In Figure 5 corresponds to a 

calculation of the effective life time of the magnetical ly mixed levels as a 

function of e (we use for this calculation the FFMF (car)  rates given by 

E q u . ( 5 ) ) .  The good agreement between theory and experiment Indicates 

that we are In effect measuring here the rFMF (car)  emission rates (for 

F=6, IMFI < 5). 

This experiment demonstrates that the quantum noise responsible for 

spontaneous emission can be suppressed up to optical frequencies provided 

the excited atom can be confined in rnicronsized metal l ic structure. It also 

shows that this suppression effect is anlsotroplo, reflecting the breaking of 

the vacuum isotropy by the plane parallel geometry of the mirrors. The main 

diff iculty of this kind of experiment comes of course from the extreme 

col l imation required for the atomic beam. The angle subtended by the 

mirror gap Is only ~ ]0 -4  radlan and the Cesium oven has to be moved 

with precision until the atomic beam Is perfectly aligned on the mirror gap 

axis [¢z ] .  Contamination of surfaces by the atomic beam and pressure 

bui ld-up inside the gap are also sources of noise and experimental 

problems (the small residual contributions of atoms In levels F = 4 and 5 In 

the spectrum of Figure 4b probably comes from colltslonal transfers of 

atoms from the long lived M F = ±6 states In the last mm before dotoct lon). 
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Ltmita_t[0n t o  excited atomic state survival in a cavltv : the Van der Waals 

interaction with the..w~ll~ 

An interesting question we should ask at this stage is "how long can 

an excited atom be kept disconnected from vacuum fluctuations ?". The Yale 

experiment has a c h i e v e d  the largest life time lengthening ratio so far. Could 

this ratio be further increased and excited atoms propagated during 

hundreds of natural life times in mlcronslzed structures ? First of all, the 

spontaneous emission inhibition is l imited by finite cavity losses, allowing a 

small "residual" vacuum field to leak into the cavity beyond cut-off .  In our 

experiment (gold surface reflexton c o e f f i c i e n t  ~ 96%), this effect cor res-  

ponds to a minimum Inhibited rate ~ 0.04£ o . This l imit could be improved 

by using better c o n d u c t i n g  cavities in which we could try to p r o p a g a t e  

excited atoms along longer pa thes . . .  Apart from pure geometrical co l l i -  

mation problems, we would then rapidly run Into a fundamental l imitation 

related to the Van der Waals Interaction [J.3] of the atoms with the cavity 

walls. Excited as well as ground state Cesium atoms are pulled to a metall ic 

surface at distance z by a Van der Waals force which, at close atom metal 

range, is proportional to z -4. Only atoms exact ly  at mid-gap would In 

theory survive without fall ing on the mirrors, but this is a very unstable 

equil ibr i lum s i tua t ion . . .  Fundamentally, the Van der Waals atom-metal  

attraction cannot be separated from the cavity induced radiative decay 

modification, We have considered above the resonant coupling of the atom 

with field modes having the frequency of the atomic transition (dissipative 

part of the atom-f ie ld Interact ion). The atomic system Is also coupled to the 

non-resonant modes of the vacuum field (dispersive contr ibut ion).  This 

coupling can be analyzed in terms of virtual photon emission and 

reabsorption processes and is responsible for radiative energy shifts. The 

cavity induced changes of the mode density also modify these processes 

(virtual photons -as  rea l  ones-  can  only be emitted in modes compatible 

with the cavity geometry) .  As a result, the atomic energy levels are altered 

In the cavity. These modifications depend upon the posltlon of the atom 

since it can be coupled only to these modes which have a non-zero electr ic 

field amplitude at its location. The derivative of these energy level shifts with 

respect to z is nothing but the Van der Waals force mentioned above. The 

analysis of the Van der Waals interaction tn term of Q.E.D.  virtual 
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processes  in a cavi ty has been car r ied  out In many theore t ica l  papers 

[ a ] r 1 4 ] ,  the f i rst  of wh ich  be ing a p lonneer lng  ar t ic le  by Cas lml r  and Polder  

[ ~ s ] .  

We present  now a qual i ta t ive  a rgumen t  showing  that the Van der  

Waais fo rce usually rest r ic ts  the exctted state surv iva l  t ime In the cavi ty to a 

few tens of natura l  l i fe t imes,  tn a b ip lanar  cavi ty s t ruc tu re  at cu t -o f f  

( d= . k /2 ) ,  the max imum d is tance an atom can be f rom mtr rors  ts z=A/4.  The 

Van der  Waals energy  shi f t  of an exc i ted state In con f i gu ra t i on  n Lm is then 

of the o rde r  of 

2: 
z~ (z ~ x ) ~ eq z z z z (6) 

I I l 3 < x + y + 2z >n~m 
4 47re A 

0 

where  q is the e lec t ron  cha rge :  x, y, z are the va lence  e lec t ron  

coord ina tes  in the atom f rame and < >ntm denotes an average In the 

exci ted a tomic  state. Let us compare  this shi f t  to the spon taneous  emiss ion  

rate in free space for an atomic t rans i t ion  of wave leng th  ;~ between levels 

InLm > and I n ' L ' m '  > : 

2 3 

r = q oft I<  nLm I~1 n ' L ' m '  >1 z' ( 7 )  
0 3 

3rr~ ft A 
0 

The squared  matrix e lement  In Equ. (7) Involves an overlap integral between 

d i f fe ren t  states and is usua l ly  about  an o rder  of magn i tude  sma l le r  than the 

d iagona l  matr ix  e lement  in Equ. ( 6 ) .  Keeping t rack of the var ious  rr fac tors ,  

we thus get as a general o rde r  of  magn i tude  : 

~tr 
0 

Az (z ~ "W" ) ~ 4 (s) 

This  resu l t ,  I ndependen t  of x,  shows that the cavi ty  Induced d ispers ive  

co r rec t i ons  are - a r o u n d  the mldgap p o i n t -  of the same o rder  as the 

d iss ipat ive co r rec t i ons  (wh ich  comple te ly  cance l  r o ) .  The Van t ier  Waals 

force FVW at t ract ing the atom to the mi r ro rs  Is the der ivat ive of z~E versus z 

and of the o rder  of 3 ,~E/ (A /4)  ~ 12AE/A. Thus,  a round mldgap : 

3hF 
o (9) 

FVW~ A 
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This force cor responds to an acce lera t ion "YVW ~ 3h ro /MX (M = atom 

mass) .  The d is tance an atom fal ls towards the mir rors  dur ing a short t ime r 

ts : 

2 
3i%r r 

0 8z ~ (10) 
2MA 

Since FVW Increases very quickly when z d imin ishes,  it is leg i t imate to 

assume that the maximum t ime Tma x an atom wil l surv ive before co l l id ing 

with a mi r ro r  is such that 6z ( r m a  x) ~ X/ ]O or : 

z J./z 

7max 15f%F 
0 

The maximum life t ime enhancement  rat io is thus : 

z 
T MX r ~/z  

7 15~ 
0 

(z2) 

which can be rewri t ten in the more t ransparent ly  homogeneous form as : 

I/z 
rm~ ~L McZ'ftr°'~ (13) 

~ z z  
1" 

0 

In which we have int roduced the atom res t -mass  energy (Mc z ) ,  the atomic 

t ransi t ion energy (ft~) and the excited state Helsenberg energy  uncer ta in ty  

( f t r o ) ,  in our  exper iment  [ M c Z ~ ] . 2  ]0¢¢eV: hog=0.35eV: ~ ro~3 .9  10 -¢ °eV ] ,  

we find "rmax/ ' r  o ~ 20 which is of the same order  of magni tude than our  

observed enhancement  factor  (~  13).  Actual ly  a more prec ise computat ion 

of the atomic Van der  Waals t ra jector ies In our 1. ]p,m wide mi r ro r  gap 

shows that 20% of the atoms only survive co l l id ing with the wal ls,  The 

excited state atomic t ransmiss ion would comple te ly  vanish if our cavi ty length 

was extended beyond L ~ ] cm.  Equ. (13) shows that ~'max/'ro is of the o rder  

of the square root of the rat io between the natural  width ( h r  o) and the 

photon recoi l  shif t  (h~Z/2Mc z) of the atomic t ransi t ion.  This rat io cannot  be 

var ied too much in the opt ical  domain, ( i t  s l ight ly  Increases with M, which 

just i f ies the choice of a heavy e lement  in this exper imen t ) .  
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The last question which remains to be addressed Is whether these 

life time enhancement  experiments would be interesting for pure spect ros-  

copic or metrology applications. Would it be possible to make use of 

spontaneous emission Inhibition to reduce the spectral l ine widths below 

their  natural limit and achieve better ultimate resolution ? The answer is 

here again unfortunately given by the Van der  Waals In te rac t ion .  The long 

lived excited states are indeed energy shifted by an amount at least of the 

order  of the natural width (or  a non-negl ig ib le  fraction of it,* see Equ. ( 8 ) ) ,  

This shift is furthermore quite tnhomogeneous In the cavity so that it seems 

that any spectroscopic measurement will suffer a perturbation at least as 

large as the natural width suppressed In the cavity I This Is of course only 

a first order  answer and one can Imagine schemes in which one selects 

atoms travell ing close to mid-gap,  along trajector ies where the cavity shifts 

could be minimized and control led. It is worth noting that similar f requency 

shifts are expected in the Penning trap electron experiment. The precision 

of this experiment aiming at remeasurlng g-2 will soon be such that a good 

understanding of these shifts will become essential for Its data analysis [~6] .  

In conclusion,  we can say that by suppressing photon noise at the 

atomic frequency, we have been unable to avoid perturbing the atom by the 

dispersive part of the atom-metal  Interaotlon. The system we are then 

studying Is no longer the atom in vacuum (atom dressed by the vacuum 

modes) ,  but the "atom + cavity" entity (atom dressed by the cavity 

perturbed vacuum),  The Impossible dream of decoupl lng the atom from the 

quantum field is only partially fu l f i l led , . .  
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THE M I C R O M A S E R  AS A PROBLEM IN ~QUANTUM C H A O L O O Y  n 
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1. I N T R O D U C T I O N  

We consider a micromaser 1,2 consisting of a single mode, high-Q microwave cavity in which two- 

level atoms are injected at such a low rate that at most one atom at a time is present inside the cavity. 

In recent work, we have shown that its semi-classical version typically can lead to instabilities and 

chaos, s In contrast, general theorems indicate that i t s /u l ly  quanttzed version always evolves towards a 

unique steady-state. 4 These results confront us with an interesting paradox, since one would like to 

believe that quantum mechanics contains classical and semi-classical physics as limits. This, of course 

is the central question of quantum chaos. 

The general approach to "quantum chaology" involves the detailed analysis of model systems 

which are believed to be representative of the "generic" case, yet are simple enough to be handled 

theoretically with  some rigor. Here. as in classical chaos, one distinguishes between conservative and 

dissipative systems. Classically, the former are described by the Kolmogorov-Arnold-Moser theorem, 

and the central idea is that of invariant  tori, while strange attractors are the signature of chaotic 

dissi0ative systems. Most theoretical work on quantum chaos deals wi th  conservatives systems, a 

notable exception being offered by the work of Graham and coworkers, s Because in any experiment 

some element of loss is always present, we feel that  the analysis of weakly dissipative systems 

deserves much more attention than is presently the case. 

What  makes the micromaser attractive for chaos studies is that  it can actually be built  in the 

laboratory, and that the experimental parameters are under  exceedingly good control. In particular, the 

atom-field interaction time and cavity damping rate can be varied almost at will. Also, despite the 

fact that the intracavity field can not (yet) be measured directly, the dynamics of the system can be 

monitored by  studying the state of the successive atoms as they escape the resonator, and this with 

almost unit  quantum efficiency. We thus feel that this system is ideally suited to study the elusive 

"quantum chaos" both theoretically and experimentally. 

The rest of this paper is organized as follows. Section 2 briefly reviews the quantum mechanical 

description of the micromaser. Section 3 presents a semi-classical version of the system and gives the 

evolution of the intracavity field in terms of a return map. In the presence of cavity damping the 

semi-classical micromaser exhibits a number  of coexisting fixed points, whose basins of attraction are 

intricately entwined. We use simple pre-image arguments 6 to show that there are domains of initial 

Conditions where these basins of attraction are fractals. Graham et al. have studied quantized 
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versions of dissipative maps whose classical versions exhibit chaos s and found that quantum 

mechanical fluctuations and tunneling between different  atti'actors lead, at least in the semi-classical 

limit /~ -~ 0. to the reduction of the quantum mechanical maps to classical maps with additional noise. 

Because we are dealing with sp in- I /2  systems, the semiclassical limit fl-~ 0 is meaningless in the 

micromaser. Still. these results suggest that something interesting might happen when noise is added to 

the semi-classical micromaser. Section 4 discusses recent preliminary results along these lines. They 

show that in the micromaser, an average of the semiclassical trajectories over a large random set of 

initial conditions reproduces at least some of the quantum mechanical features of the micromaser. This 

indicates that somehow, the quantum-mechanical  dynamics forces the micromaser to visit all classical 

attractors. Finally. Section 5 is a summary and conclusion. 

2. R E V I E W  OF THE Q U A N T U M - M E C H A N I C A L  DESCRIPTION 

In this Section. we briefly review the quantum-mechanical  description of the micromaser. Details 

can be found in Ref. 2. We consider a single-mode, low-loss resonator into which excited two-level 

atoms are injected at a rate low enough that at most one atom at a time is inside the resonator. The 

atom~field interaction time tin t is much shorter than the cavity damping time -C x, so that the relaxation 

of the resonator field mode can be ignored while an atom is inside the cavity, the coupled field-atom 

system being simply described by the Jaynes--Cummings Hamiltonian. 6 During the intervals between 

successive atoms the evolution of the field is governed by the master equation for a harmonic oscillator 

interacting with a thermal bath. 

Under these conditions, the reduced density matrix pf for the cavity field alone at the time ti+ ! 

when the (i+l)th atom is injected inside the cavity is given by the return map 

Pr(ti,1} - exp(Ltp)  F ( t i n t ) P r ( t i )  . (1) 

where tp = t i , l - t i - t i n  t ~- ti+l-t i is the time interval between atom i leaving the resonator and atom i+1 

entering it. tin t is the (constant) interaction time between an atom and the cavity field, and F(tint) is 

defined through 

pf(ti4tin t) = Tra[U(tint)P(ti)Ul"(t)] = F(tint)Pf(ti) , (2) 

where p(t) is the atom-field density matrix. U(t) is the 3aynes-Cummings unitary evolution matrix, L(t) 

the Liouvillian of a damped harmonic oscillator, and Tr~ stands for trace over the atomic variables. 

Successive iterations of the return m a p  (2) eventually yield a steady-state field density matrix Pf.st 

which is the solution of this equation with Pr(ti, t) - Pt(ti). 

We consider the case where  the field density matrix is initially diagonal in the number  state 

representation, and atoms without initial coherence are injected inside the resonator. We also assume 

that the atoms enter the cavity according to a Poisson process with mean spacing 1/R between events. 

where R is the atomic flux. This allows us to obtain 2 a closed form solution for the steady-state photon 

statisics Pn 
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- c ll+'bJ i+ . 

kffil • # 

f u l  
where at resonance ~n,,sin2[~/2~ntintJ andNex=Rl%~lbeingthecavity damping rate, ~cthe 

atom-field coupling constant and n b a measure of the resonator temperature. N ~  can be interpreted 

as the mean number of atoms transiting the cavity during its damping time ~¢-t We have checked the 

resulting distribution against an exact numerical solution o] (2), and found no significant difference in 

the context of the present paper. We will return to the photon statistics (3) in Section 4. 

3. REVIEW OF THE SEMICLASSICAL DESCRIPTION 

There is no unique way to define a semiclassical limit. It is often interpreted as the limit /~ -* 0. 

But this limit has no meaning in spin-I /2 systems, and we use instead the conventional 9 quantum 

optics semiclassical limit obtained by factorizing the full quantum mechanical Heisenberg equations of 

motion, As shown in Ref. 8 for a lossless case and generalized in Ref. 3 for the case of a micromaser 

with weak cavity damping, this procedure leads to the return map for the field ~n÷l at the time of 

injection of atom (n+l): 

# . + l  = ~ ' ~ - ( # . )  - ~ ( # n )  ' (4) 

where the attenuation coefficient o~ is 

cx - exp(-77"o/2)  , (5) 

To is the (constant) time between injection of successive atoms, and ~r  is given implicitely by 

(6) 

Here ~ is a parameter indicating the state of the injected atoms, q - 1 for inverted atoms and q = -1 

for ground state atoms, and tin t is the atom-field interaction time, all times being in dimensionless 

units, s 

In some of the numerical work. we have found it useful to reexpress (6) explicitly in terms of 

elliptic functions as 



160 

1 + onn2/4 
g'n+l " a ~ n  1 + 6 'n: /4  - snZ('rn, K a) ' 

(7) 

w h e r e  

and  

Tn " 'tint 
(8) 

K .  - 1/41 + 6'n=/4 ' (9) 

A n  example  of the  r e tu rn  map  fi~ is shown in Fig. I. 

5 

÷ 

c- 

4 

~5 

o F I I I .... t 
0 1 2 3 4 5 

~ °  n 

Figure  1: R e t u r n  map  8a+ ! - ~(oPn) for  init ial ly inver ted  atoms, r i , t  " 9, and a - 0.9. 

Ig i label the  f ixed points that  are uncondi t ionaUy uns tab le  and  d' i  the  condi t ional ly  

stable f ixed points  of the map. 
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The map ~(~)  is not invertible, and its various fixed points have tightly interwoven basins of 

attraction. These can be found by seeking the successive preiterates of some domain of the map whose 

subsequent (forward) images are well understood. Grebogi et el. have used such techniques 7 to study 

multi-dimensioned interwined basin boundaries in a number of maps. They found that these 

boundaries can have different properties in different regions, and that these regions can be intertwined 

on an arbitrarily fine scale. 

Consider for instance the map illustrated in Fig. 2, which resembles the map of the semiclassical 

micromaser. All initial conditions in the interval [A,B[ belong to the basin of attraction of S~. and all 

points in ]C.D[ certainly escape past ~2. Constructing the successive preimages of these domains 

allows to determine their respective basins of attraction. This immediately leads to the realization that 

the basins of attraction of the micromaser are finely intertwined, and that they are Cantor sets at least 

in some domains. We have not yet determined the dimensions on the basins of attraction, nor have we 

tested the conjecture v that "basin boundaries have at most a finite number of possible dimension 

values." 

Xn,1 

-.-I-'- 

-h-  

A B (3 D 

I I I 
! Ill ~i II 

tI i l 
d 1 t tl 

xn 

Figure 2: Map illustrating the determination of the basins of attraction of various fixed 

points. The shaded regions represent the initial conditions leading to an escape past U:. 

4. SEMICLASSICAL VERSUS Q U A N T U M  MICROMASER 

The semiclassical micromaser is generally chaotic and exhibits a number of coexisting and tightly 

intertwined basins of attraction. The quantum mechanical micromaser, on the other hand. always 
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evolves towards a unique steady state. One would like to believe that the latter includes the former 

one as a limit, and yet, it appears that the semiclassical description allows for a much richer 

dynamical structure than allowed by quantum mechanics. Little is known on the quantum/classical 

correspondence in chaotic dissipative systems. We already mentioned the work of Graham and 

coworkers, who studied quantized versions of dissipative maps whose classical versions exhibit chaos ~s, 

and found that  quantum mechanical fluctuations and tunneling between different attractors lead. at 

least in the semi-classical limit h -* 0, to the reduction of the quantum mechanical maps to classical 

maps wi th  additional noise. Unfortunately the limit ~ -* 0 has no meaning in the micromaser, which 

couples sp in- I /2  systems to a boson field. 

Although it is not clear if and how Graham's  results can be formally related to the problem at 

end, the s tructure of the classical basins of attraction of the micromaser suggests that quantum 

fluctuations might be influential in forcing the system to jump from one of them to the other. Hence 

the addition of noise to the semiclassical problem might make it "look more quantum mechanical". To 

test this idea, we have performed preliminary simulations where  instead of adding noise to the 

classical map. a precedure that is very computer intensive, we average the classical results over a 

random set of initial conditions. 

The results of such a simulation are summarized in Fig. 3. along with the results of the quantum 

mechanical results reproduced from Ref.2. We find a striking qualitative agreement between the 

averaged semiclassical results and the quantum ones. The averaged semiclassical system now always 

reaches a steady state with (J'oo) - 0 and an average intensity (~'oo2/4~(0) (which corresponds to the 

I'O I~I 20 200 ° f 

o u , , , 

b 

i I 
5 I0 

0 

! t 
5 40 

Figure 3: (a) Quantum mechanical normalized average photon number  t ,- (n )~ex  as a 

function of e for Nex - 20. 200. 2000 (from Ref.2); (b) Averaged normalized 

semiclassical intensity I - (~'~)/43,'ex for Nex - 50; (c) Same for Vex - 100. 

quantum mechanical (n)) essentially independent of ,Vex for Nex sufficiently large (see Figs. 3b and 3c). 

This result is very unexpected: The scale parameters of the quantum mechanical problem are 

Nox - R/'r (1(3) 

and 

o .   t ,t/2 . (11) 
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while those of the semiclassieal map are 

and 

rirtt I ~jn~/4 ] 0 /~N~x (i2) 

- exp(-'tto/2) - exp(-l/2Nex) , (13) 

It is not at all intuitively obvious that when averaged over initial conditions, the (e, riat)-scaliog of the 

classical map should turn  essentially into a 0-dependence only. In particular, the damping coefficient 

~. which is an explicit order parameter of the classical problem, and whose variation can produce 2 full 

Feigenbaum sequences, ceases to be important[ 

Just as str iking as this result is the excellent qualitative agreement between the semiclassical 

dependence of ! - (~oo~)/4Nex on 0 and the corresponding quantum result for ~ = (n)/Nex. In 

particular, we recover the subsequent thresholds past the conventional maser threshold. ~ However. 

their position is slightly shifted to lower values of 0. We do not know yet if this is an artifact 

resulting from our rather  simplistic choice of a random set of initial conditions. Note that the rather 

"noisy" chatacter of ~(0) is a numerical artifact due to the limited number  of trajectories averaged 

over. This is evidenced in a comparison of Figs. -~b and [1¢, which are the results of an average over 

200 and 100 trajectories, respectively. In its present form. our program is not very efficient, a typical 

run taking several minutes on a supercomputer. Also. the convergence of the iterations of the classical 

map decreases drastically with increasing ]Vex. Improving the program will certainly allow for better 

statistical averages and more complete numerical experiments, in particular on the steady-state 

intensity distribution P(6',, 2. 0). 

5. CONCLUSIONS 

The comparison between semiclassical and quantum descriptions of the micromaser is obviously 

far from complete. A t  this point, we do not have an explanation for the reported results. When we 

started this work, we merely wanted to convince ourselves once more that sp in - l /2  systems are not 

good candidates to study the quantum-classical correspondence in situations exhibiting classical 

dynamic instabilities. Clearly, our results force us to revise at least temporarily this view, and open up 

more questions than they answer.  Are  they accidental or generic ? Can we recover more than Just the 

average quantum mechanical average energy? What is the physical origin of the agreement, and in 

particular, what  is the role of dissipation? What  are its implications? 

The qualitative agreement t h a t  we found might be just a coincidence, but then, it would have to 

be a rather  remarkable one, specially since the quantum mechanical function E0) is far from trivial. 

Whether the interpretation of our results will wind up  being rather  obvious or having any 

fundamental  relevance remains to be seen. 
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Abstract 

We show that the continuous-wave oscil lation of a two-photon maser can 

be achieved with Rydberg atoms In a superconducting cavity. The maser 

should operate with only a few photons and a few atoms at a time In the 

cavity. Theoretical aspects of this new quantum device are presented. We 

describe briefly an experimental apparatus presently under construction in 

our Laboratory. 

Lasers -o r  masers-  operating on two-photon transit ions between atomic 

levels of same parity have been the subject of a great number of theoretical 

papers In the last twenty years [ z - 8 ] .  These lasers present interesting 

features, making them very different from "ordinary" one photon lasers. For 

instance, It has been pointed out that the field emitted by these new 

quantum devices might present interesting statistical properties (generat ion 

Of "squeezed" states of tight i s - e ] ) .  

Up to now, in spite of numerous attempts, there has been, to our 

knowledge, no realization of a continuous-wave two-photon osci l lator. Only 

one report of two-photon amplif ication in a pulsed regime has been 

published so far I;g]. This Is due to the vanlshlngly small gain on a two- 

photon transit ion, at least for "ordinary" transit ions between low-lying 

levels : two-photon amplif ication is masked by competing non- l inear  

processes, such as multiple wave mixing or stimulated Raman effect. 

Rydberg atoms are a very good tool for matter- f ie ld Interaction experi-  

ments, because of their unusual properties. Among them, let us quote their 
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very large coupling to radiation In the mi l l imeter-wave range, where very 

high Q low order cavit ies are available. In the last few years, they made 

possible the realization of new quantum devices with fascinating properties, 

such as masers with a threshold down to one atom at a time in the cavity, 

operating on one photon transit ions, either in a pulsed [¢o] or cont inuous- 

wave £ ~ ]  regime. This "micro-maser"  regime has been extensively studied 

theoret ical ly [=z-J.~]. 

We show in this paper that Rydberg atoms could also make possible the 

continuous-wave operation of a two-photon maser, tn a regime where a few 

atoms and a few photons only are present, at a t ime, in the high Q 

superconducting cavity. 

The outl ine of this paper is as follows , In the first section, we give an 

estimate of the two-photon maser threshold, and a simple semi-c lass ica l  

model of Its dynamics. The second section will be devoted to a more 

real ist ic quantum description of the maser. The field density matrix master 

equation will allow us to Investigate field statistics and phase diffusion. We 

describe briefly, In the last section, the experimental apparatus now under 

construction In our laboratory. 

I. Semi-c lass ica l  model 

We evaluate f irst the order of magnitude of the threshold for a simple 

model of Rydberg atom two-photon maser. 

Rydberg atoms are prepared by laser Irradiation of an atomic beam in the 

upper level l e > of the two-photon transit ion. They then cross a resonant 

microwave cavity. The average atom-f ie ld interaction time ts tin t . In the 

cavity, the atoms may undergo a transit ion to the lower level If >. We will 

estimate the minimum atomic flux T/tat required to sustain a non-vanishing 

field In the cavity (damping time tca v = Q/=: Q : quality factor) .  

Typical levels configuration Is depicted on fig. I : two-photon transition at 

frequency =/2Tr occurs between l e  > and If  > ( n S ~ / z  and ( n - 1 ) S = / z  

here) .  The transit ion amplitude Is strongly enhanced by the occurence of a 

relay level II > [ ( n - 1 ) P a / z  In fig. l ]  close to the middle of the two-photon 

transit ion. 
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nS le>  

Fla. I (n - | )$  

W 

1 f>  

An Impor tant  quantity Is thus the detun ing A, g iven by : 

(E e + Ef) 
ft& = E i 2 ( z )  

In a cavity conta in ing  N photons,  the atoms undergo  a two-pho ton  Rabl 

nutat ion at angu la r  f requency  (Zz(N) : the probabi l i ty  of f inding the atom In 

state l e > a t ime t af ter  Its p repara t ion  In the same state Is : 

1 [z  + cos t ]  Pe(t) = -~- nz(~) 

C=z(N) is approx imate ly  given by [=4 ]  : 

( 2 )  

u 

2~ei(N) nif(~) 
n z ( ~ )  = A ( 3 )  

where  rZel(N) and ~ i f (N)  are the Rabt nutatJon angu la r  f requenc ies  for a 

f ield resonan t  on the l e > --* Ii > and I I > -~ If > t ransi t ions respect ive ly ,  

with an energy  co r respond ing  to N photons : 

D e i ~ o  
= 

/ i  

Del and Dlf are the e lec t r ic  d ipole matr ix e lements  on these t rans i t ions,  ~" o 

= ~ ftoJ/2~oV Is the f ield per  photon In the cavity (effective volume v) .  We 

assume here that a tom- f ie ld  coup l ing  is constant .  This is genera l ly  not the 
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case when the atoms move In an actual cavi ty mode. However, this 

var ia t ion can be taken into account  by a mere redef in i t ion of ~ o .  

Rydberg atoms present  features which make nz (N)  unusual ly large : Del 

and Dlf are huge and one can use, In the m i l l ime te r -wave  range,  a tow 

order  cavi ty  having a large g o .  

Moreover ,  the quantum defects of S and P levels di f fer  by about 0 . 5  for 

al l  a lkal is : the detunlng A Is thus rather  smal l  compared to ¢~. It Is even 

exceed ing ly  smal l  for some selected t rans i t ions : the stow var iat ion of 

quantum defects  with n, measured in h igh- reso lu t ion  spect roscopic  expe -  

r iments  [ ~ s - ~ a ] ,  enta i ls  that ~, crosses O around some n value. In 

Rubtdlum [J.?] and Cesium [~.s] spect ra ,  this co ' l 'nc ldence occurs for eas i ly  

excited levels with n ~ 40. As an example,  A/2Tr=-39MHz for the 4 0 S t / z  --* 

39S~/z  Rubidium t ransi t ion at 2 x 68.416GHz (39P3/z  relay leve l ) .  

For this t rans i t ion,  we have Del = 1443 qao, Dif = ]479 qa o, Assuming 

v=70mm 3 (cy l ind r i ca l  cavi ty In the TE~z~ mode, d iameter  D=7 .8mm,  length 

L=7 .55 ram) ,  we get ~el ~ nlf ~ 7 10 T ~ " ~ / s  and f inal ly  

N --.f. 
• Z  ( N )  ----- B N w i t h  B == 4 0 0 0  S ( 4 )  

The atoms exper ience thus a two-photon Tr pulse dur ing tin t (30p.s) In a 

f ield conta in ing only 25 photons I 

The maser  threshold Is easi ly  obtained f rom these orders of magnitude. 

Each atom must leave a large part of its energy In the cavi ty : we must 

have 

n(N) tin t ~ ~ (5) 

The N photon f ield ts sustained by this energy income if 

tat ( 2tca v / N (6) 

The threshold condi t ion is thus : 

"t /T 

tat 2B tin t tca v 

If the cavi ty qual i ty  factor  Q is c lose to the theoret ica l  l imi t  for a Niobium 

superconduct ing cavi ty at T = 2K (Q = 2 108),  the threshold condi t ion 

reads : 



EFJg, 2 : 

4 --) 3 1o at/s (S) tat 

and the cavi ty conta ins ,  at threshold ,  N = 30 photons only. This value can 

eas i ly  be obtained with a c , w .  laser  exci tat ion. Moreover ,  the exceed ing ly  

low values of a tomic flux ( less  than one atom at a t ime in the cavi ty)  and 

of f ield in tensi ty  ensures that no compet ing process can overwhelm two-  

photon maser  osc i l la t ion.  

This model  can be made more quant i tat ive.  Let us wri te the rate equat ion 

for  the mean photon number  N : 

~=-N-~dt tca v + 2-~--Ii-c°s ~z(N) tint I t a t  2 (9) 

The f i rst  term In r. h . s .  of (9)  descr ibes the cavi ty losses at rate ] / t a t ,  

the second one the energy deposi ted by the atoms in the cavity. 

The maser  operat ing points are the in tersect ions of the curves r ep re -  

sent ing these loss and gain terms as a funct ion of N. Loss (s t ra ight  l ine) 

and gain (s lnuso ' tde)  curves have been plotted on f i g . 2  for four d i f ferent  

va lues of tea v and tat. 

~00 N 6 5o 
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loss and gain terms for a funct ion of N for 
a) tca v = 6tat, b) tca v = 12tat, 
c) tca v = 24tat, d) tca v = 48tat. 

Stable operat ing points are open -c i r c l ed .  Even above threshold ,  there is 

a stable solut ion at N=0 : In this sem i - c l ass i ca l  model ,  the two-photon 
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maser does not start alone In an empty cavity. A large enough tr iggering 

field must be present initially to reach a large N operating point. This 

behavlour Is very di f ferent  from the one-photon maser one, which starts 

alone above threshold. At last, let us quote that eq. (9) admits, welt above 

threshold,  many stable solutions (see curve 2d) .  

This model is, of course,  oversimplif ied. Many phenomena which might 

modify our conclusions are not taken into account,  like spontaneous 

emission, blackbody field induced transit ions, Maxwetlian velocity spread, 

etc. 

II. A simple ouantum theorv of the two-0hOtQ0 maser 

We give here a simple quantum model of this maser, taking properly Into 

account two-photon spontaneous emission. It will lead us to conclusions 

quite different from the semi-c lassical  ones. The other effects mentioned 

above could be straightforwardly introduced In this model, but they make the 

algebra more compl icated and do not modify drastically the system's 

behavlour [19] .  

We first derive a master equation for the field density matrix p, In a way 

reminiscent of the one used by FIIIpowlcz et at [ ¢z -~3 ]  In the one-photon 

micromaser case. 

We constder that, at most, one atom Interacts with the cavity field at a 

time. Let t t be the t ime when the I th atom enters the cavity. The field 

density matrtx p at t ime tl+ 1 is expressed as a function of the one at t ime t i 

by : 

L tat 
p (ti+l) = e F (tint) p (ti) (Z0) 

F (tin t ) Is the operator descr ibing the field change due to the Interaction 

with a single atom. exp {L tat } descr ibes field relaxation during tat = tl+ ] 

- t I. L Is the wel l -known relaxation Llouvllle operator def ined, In a T = OK 

cavity, by : 

= * - < "  Lp 
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(a and a + are the photon annih i la t ion and creat ion operators  respect ive ly ) .  

In ( ] 0 ) ,  we have taken Into account  separate ly  the a tom- f ie ld  in teract ion 

and the f ield r e l a x a t i o n .  This approx imat ion Is just i f ied if both e L tat and 

F ( t in t ) a r e  c lose to unity, that Is to say tf tea v >> tat, and If the f ield 

change due to the in teract ion with a s ingle atom is smal l .  

Let us now assume that tat is a random var iab le ,  with a Potsson 

probabi l i ty  d is t r ibut ion : 

--R tat 
P(tat) ---- R e (12) 

We take here Into account  the unavoidable pumping f luctuat ions.  If the 

f ield change due to the Interact ion with a s ingle atom Is smal l  enough,  we 

can a v e r a g e  ( ] 0 )  over a great  number  of Interact ions and write : 

m -R tat n tat 
= ~ d tat Re e /3( ti+l ) o F(tin t) P(t i) 

(Z3) 

( th is  approx imat ion Is remin iscen t  of the coa rse -g ra i n  averaging In standard 

laser  theor ies  [ zo ] )o  

The in tegrat ion in ( ] 3 )  can be per formed,  and we get : 

1 
P(tl+l) = i------~ F (tin £) p (t i) (14) 

or e lse : 

R [P(ti+l)-P(ti)] = LP(tI+I)÷R [F(tin t) P(ti)-P(ti)] 

(is) 
As tl+ l - t i approaches zero (when compared to tea v), one can replace 

the r.h.s of (15) by ~, and Lp(tl+ I) by Lp(tl). One thus gets a Fate 

equatlon whlch turns out to be formally Identical to the one of the Scully 

and Lamb model [~o ] .  

F ( t ln  t) can be obtained from the study o f  two-photon Rabl osc i l la t ions.  

The ca lcu la t ion Is s t ra ight forward In the dressed atom picture [ z ~ , z z ] .  
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The master equation f inally reads : 

~NM(t)=-R PNM(t) [l-A(N,tint) A (M, tint)] 

+ R PN_2,M_2(t) B(N,tint) B (M, tint) 

- Q (N+M)Pt~I(t) + Q k~ (N+I)(M+I) pN+l,M+l(t) 

( 16 ) 

with 

N+I Eein(N)t 1] A(N,t) = z  + ~  (z7) 

B(N,t) = ~ N(N-I) Eein(N-2)t I] 
2 N - 1  - -  ( 1 8  ) 

The Rabl nutatlon angular frequency n(N) Is given by : 

2 
N . 

ez ~( N ) = Z~ ( 2N+3 ) 

We assumed that C~et = nlf. This ts almost the case for the actual maser 

transit ion. Let us stress that n(0) does not vanish, because of two-photon 

spontaneous emission, and that •(N) and the semi -c lassical  frequency 

nz(N) coYnctde for large N's. 

The structure of ( ] 6 )  Is very simple : the matrix elements PNM are 

coupled only to PN'M" with M-N = M' -N ' .  We therefore get separate closed 

differential equations systems for the Fock states populations PNN and for 

the coherences PN, N-'I (only these elements will be used tn the following 

discussion).  

There are, at least, three ways to solve the equations set for the 

populations PNN. First, It can be truncated at some N value much larger 

than the expected average photon number, and Integrated numerical ly. On 

the other hand, when looking only for the steady state, one makes /~NN=0. 

PN+I ,N+ ]  can therefore be expressed as a function of PN,N and PN-2, N-2- 

One gets then recurrence equations allowing to calculate all the populations 

at equil ibr ium. 
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We show now that this master  equat ion set can also be t rans formed into 

a Fokke r -P lanck  equat ion valid for large N's. 

First we In t roduce new notat ions : the reduced  photon number  n = 

N / 2 N e x  , where  Nex = ¢o/QR ts the number  of atoms c ross ing  the cavity 

dur ing Its re laxat ion t ime,  and 6 = 1 / 2 N e x .  We will use ] / R  as the t ime 

unit. The equat ion  for Pnn now reads : 

+ Pn-28 ,n -28  E l - I X (  n - 2 6 , T i n t  )I z'-] 

-2n Pnn + 2(n+8) Pn+8,n+8 (zg) 

The reduced  Interact ion t ime Tin t is given by : 

2 

el 
Tin t = 2Nex ~ tin t (20) 

and 

2 2N+3 Tin t 

A( n, Tin t ) = A Wexn' 2Nex O( 2Nexn ) (2z) 

We then cons ide r  Pnn as a funct ion of a con t inuous  var table n and expand 

( ] 9 )  in powers  of 8, a small pa ramete r  If Nex >> ] .  We get  : 

Z a 
• 8 8 8 ,, o , 0 " ,  

2 an 
( 2 2 )  

where 

3 sin2nrint-n- ] ( 23 ) a (n) = 2 EsinZnrint + ~ Srint 

and  

z 

a z ( n )  = 4 s i n  n r i n  t + 2n (24)  
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Equation (22) Is of the Fokker -P lanck type. It Is, of course,  only an 

approximat ion to the or ig ina l  master  equat ion,  val id for s << ] and n >> 6 

( I . e .  val id for  htgh pumping rates Nex and large f ie lds } .  

The steady state solut ion of (22) ts read i ly  obta ined as : 

s c 
==P-n == az,  n , ~ .  J exp [ - V ( n )  ] ( 25 )  

The ef fect ive potent ial  V (n )  being : 

2 rn a j ( n '  ) 
V(n )  = - S Jo a z ( n ' )  t in '  (26 )  

and C a norrnal lzat lon constant.  
s The behavlour  of pnSn Is thus main ly  determined by V ( n ) :  Pnn Is peaked 

around the absolute rnlnlmum of V ( n ) .  Let us stress that the extrema of 

V ( n ) ,  cor respond ing to the zeroes of a ~ ( n ) ,  co ' fnc lde with the steady state 

operat ing points In the c lass ica l  model (unstab le  ones correspond to a 

maximum of V ( n ) ,  stable ones to a m i n i m u m ) .  

V(n )  has been plotted, as a funct ion of n, on fig. 3 for d i f ferent  Tin t 

values.  

0 
b 
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I I I 
0 0.5 1 1.5 n 

1=!9~,3 : V(n)  for Tin t =  0 . 9 ~ / 2  ( a ) ,  Tin t =  1 .5T r /2  ( b ) ,  Tin t = 5 ~ / 2  
(C) 
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The s e m i - c l a s s i c a l  model  th resho ld  value co r responds  to Tin t N 0 . 9  rr/2. 

For V-in t = 0 . 9  ~r/2, there  Is a m in imum in V (n )  a round  n = ] ,  but its va lue 
s 

Is g reater  than V (0 )  = 0. Pnn Is thus maximal  for  n=0,  and the steady 

state mean photon numbe r  Is c lose to zero ( In  fact ,  C25) and (26)  canno t  

be used for  n ~ 0 : the approx lmat lons  used to get the Fokke r -P lanck  

equa t ion  (22)  a re  no longer  val id  in th is  case.  However ,  d i rec t  in tegra t ion  

of the master  equa t ion  shows ( ~ ]  that  the c o n c l u s i o n s  obta tned here  are 

qua l i ta t i ve ly  c o r r e c t ) .  

The th resho ld  cond i t i on  ts thus  not the same as tn the semi-c lass ica l  

model  : a m in imum of V ( n )  for  n;~0 must  extst (T in  t ~ 0 . 9  r r /2,  s e m i -  

c lass ica l  t h r e s h o l d ) ,  but Its va lue must  be lower  than zero 

(~'lnt >~ 1 .4  r r / 2 ) .  Of cou rse ,  this s l igh t  th resho ld  mod i f i ca t ion  does not 

change  our  conc l us i ons  on the maser ' s  feasabl l l ty .  Let us stress at l as t  
s 

that ,  for  2 Tr/2 ~< "tin t ~ 6 . 5  rr /2, Pnn co r respond  to s u b - P o l s s o n l a n  s ta t i s -  

t ics for the f ie ld.  

In the s e m i - c l a s s i c a l  model ,  the steady state so lu t ion  depends  on in i t ia l  

cond i t i ons  ( fo r  Ins tance on the p resence  of a t r i gge r ing  f i e ld ) .  Th is  is not 

the case here.  To c lar i fy  th is  po in t ,  we cons i de r  qua l i ta t ive ly  the t ime 

evo lu t ion  of the system when Pnn Is In i t ia l ly  peaked a round an arb i t ra ry  n o 

va lue.  Because of the drag term a~ (n )  in ( 2 2 ) ,  the mean photon number  

wi l l  reach  In a shor t  t ime a value c lose to the neares t  loca l  m ln lmum of 

V ( the  t tme sca le  of th is  p rocess  tu rns  out to be t cav ) .  Genera l l y ,  th is  

m in imum ts not the lowest  one : the state reached  is on ly  metastabte.  

Because  of the f l uc tua t ions  ( te rm a z C n ) ) ,  Pnn wtll escape f rom th is  

potent ia l  welt and reach a more stable one.  Standard  t echn iques  [ z 3 ]  a l low 

us to de te rm ine  the t ime sca le  of th is  process.  Passage t imes are typ ica l l y  

found  a round  "10Ztcav (0.  l s  in an actua l  expe r imen t ) .  

In the case  of a maser  s tar t ing in an empty cavi ty  (n  o = 0 ) ,  for 

t in t ~ 1 .4  r r /2 ,  a f ie ld wi l l  bu i ld  up In the cavi ty wtth a typ ica l  t ime cons tan t  

of th is  o rder  of magn i tude  : maser  t r i gge r ing  is no longer  needed when 

spon taneous  emiss ion  p rocesses  are Inc luded in the model .  For 

Tin t ~ 5 r r /2,  n=0 Is even no l onger  a m in imum of V (n )  : for  such h igh 

pump ing  rates,  the maser  starts a lone with a t ime cons tan t  of the o rder  ot 

tcav. 

The s t ruc tu re  of the master  equat ion  for  f ie ld c o h e r e n c e s  PN, N-1 is very 

s im i la r  to the one for  PNN. It may also be expanded In powers of s, and Its 

Solut ion reads,  let t ing g ( n )  = PN, N - 1 ,  



176 

g(n,t) = gs(n) e -p£ (27) 

where gs is the steady-state solution of a Fokker-Planok equation, p. 

reads : 

z z 1 El_ 8 [i sin2nsrlnt 
~=8 [ T i n t  + -~S ~ + iS T in  t ~ 2nsrin t ] ~ 

(2e )  

where n S Is the mean steady state value of n, determined by (25) .  

The real part of /~ descr ibes phase diffusion, with a typical time constant 

4NexTca v ( for  "tin t ~ n ~ 1). The term sZ/4ns  In (28) corresponds to the 

usual phase diffusion rate due to dissipation In one photon lasers models 

[ zo ] .  

The Imaginary part of /~ corresponds to a very weak frequency shift (of 

the order of ] / t c a v ) .  It can be Interpreted as the effect of the refractive 

Index of the atomic medium. 

The s a m e  techniques can be applied to the rate equations for elements 

like Pn, n-2.  It Is thus possible to calculate the squeezing propert ies of the 

cavity field in this model. This discussion is out of the scope of this paper, 

and will be given elsewhere [~-=]. 

III. Outline of the experiment 

We are presently building an exper iment in order to realize a two-photon 

maser. We plan to use the 40Sj. /z --* 39S~/z transit ion in Rubidium. We 

take advantage of the weak detunlng (z~/2rr = - 39MHz) ,  and of a convenient 

excitation scheme [z4 ] .  40S levels are prepared by a stepwlse cont inuous-  
o 

wave laser excitation. Transit ions 5S-5P3/z  (7802A) and 5 P 3 / z  ~ 5Ds/z  

(7759A,) are Induced by temperature tuned ALGaAs diode lasers. The 

transit ion from 5ds /z  to 40P~/z(1 .26/* )  is excited by a tlquld nitrogen 

cooled InGaAsP diode laser. 40S~/z  is finally reached by a microwave 

transit ion (62GHz) ,  easily saturated by a YIg 10GHz source,  f requency 

multiplied In a non- l inear  high frequency diode [ zs ] .  In spite of the 

numerous steps Involved, this excitation scheme Is easily realized, since it 
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Involves only unexpenslve and easy- to-use solid state sources. The atomic 

flux ( ]07a t / s )  actually obtained Is well above the theoretical maser 

threshold. 

The most critical part In this experiment Is the high Q microwave 

superconducting cavity at 68.416GHz [zs ] .  tt Is precisely machined from 

high purity Niobium, chemically polished to remove the damage layer, 

electron beam welded and finally baked at high temperatures In ultra-high 

vacuum environment. These operations are performed at CERN (E.F .  

div ls lon),  and the obtained Q Is close to the theoretical B. C.S. limit. 

The very precise (~ l kHz) tuning to the atomic frequency will be 

performed by elastic deformation of the cavlty's walls. 

Maser operation will be detected Indirectly by monitoring the populations 

of 40S and 39S levels at the exit from the cavity, using the well-known field 

Ionization technique. This detection will also provide us with a c lear-cut  test 

of a true two-photon maser operation : the population of the relay level 

39Psi  z should always remain close to zero. 
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Many high resolution spectroscopic experiments are ultimately limited 

by the random motion of atoms or velocity related effects. This motion 

causes e.g. transit time effects or second order Doppler shifts and 

broadening of spectral lines, which are not canceled by most of the 

so-called Doppler free spectroscopic techniques. Atomic collision 

experiments often suffer from the broad velocity distribution and the 

angle spread of the crossing beams too. 

A thorough solution of these general problems would be a direct velo- 

city manipulation of free atoms aiming at a reduced average velocity 

and a strong reduction of the temperature respectively the width of 

the resulting velocity distribution. 

This velocity reduction can be achieved by the light pressure force 

from a resonant laser beam. In the basic scheme atoms absorb photons 

from a laser beam changing the atomic momentum by ~k (k=wavevector). 

After a short time - typically I0 ns - the atoms spontaneously reemit 

a fluorescence photon. Because of the random direction of emission the 

momentum recoil from the emitted photons averages to zero whereas the 

atomic momentum change by the absorptions of the photon momenta adds 

up constructively to a velocity change of n.~k/M (M= mass of the atom, 

n = number of absorptions) on average [i]. 

The resulting averaged "spontaneous" force f (atomic momentum change 

per time) reads: 

~ = ~ 1 S 

r l+2s 

r : natural lifetime of the "upper" cooling level 

s: saturation parameter. 

(i) 

The expression r-(2+i/s) is the cycle time, which depends on the laser 

intensity and the detuning between the laser frequency and the Doppler 
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shifted absorption frequency of the atoms. This force saturates with 

increasing saturation to ~,a~ : 

2T 

The corresponding accelerations a and a.,t read 

(2)  

~ I s ~ - 

M T l+2s 

M 2T 

(3) 

For simplification this interaction of photons with atoms should take 

place within an atomic beam and not within a gas. In an atomic beam 

almost one degree of freedom only - the longitudinal velocity distri- 

bution - has to be cooled and the atoms move in a high vacuum environ- 

ment collision free without heating by walls or other molecules. 

The basic scheme of most cooling experiments consits of an atomic beam 

and a counterpropagating laser beam. The different experimental tech- 

niques differ mainly in the experimental solution of two fundamental 

problems arising from the neccesary large number of absorptions and 

the accompanying large change of Doppler shift. 

Atomic beam coolina 

When the atoms are decelerated by the successive absorptions of photon 

momentum from the counterpropagating laser beam, their Doppler shift 

changes very fast and thus the atoms run out of resonance after the 

accumulated shift of a few homogeneous line widths. On the other hand 

the stopping process needs very many photons (e.g.~20.000, if sodium 

atoms shall be stopped from an initial velocity of about 600 m/s, 

using the Na-D-line) and thus optical pumping has to be totally a- 

voided or counteracted. 

In the first successful cooling experiments, which produced really a 

slow atomic sodium beam [2], a longitudinal magnetic field with a 

decreasing field strength along the beam axis solved both problems. 

Using circularly polarized sodium-Dz light the atoms are relatively 

fast optically pumped into the magnetic sub-level 2S~/2 (F=2, mF=2) Of 

the ground state, when they enter the magnetic field. This state is 

only excitable to the 2P~/2 (F=3, mF=3) level by the circularly pola- 

rized cooling laser beam, forming an nearly ideal two-level system. 
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When the magnetic field strength is strong enough (e.g. by a bias 

field), it can compensate for imperfect polarization of the light 

field and will avoid resulting optical pumping. When the laser fre- 

quency is tuned into resonance with fast, Doppler- and Zeeman-shifted 

atoms at the entrance of the solenoid, they will stay in resonance 

within the magnet during the slowing process if the magnetic field 

strength decreases in such way that the changing Zeeman shift 

compensates for the changing Doppler shift. 

Assuming a constant deceleration ~ within the magnet the velocity 

v(z) changes like (starting with v0): 

v(z)= (v0" - 2az)*/" (4) 

The corresponding change of the magnetic field strength B(z) to com- 

Pensate the z-dependent Doppler shift by the changing Zeeman shift of 

the cooling transition reads then (for details see, e.g. [2,3]): 

~(z)= ~0 (Z-2az/vo') */2 + ~b (5)  

Bb: bias field 

The difference between the magnetic field strengths at both ends of 

the solenoid defines the magnitude of the slowed down velocity inter- 

Val, and the laser detuning defines the final velocity of the deceler- 

ated atoms. Atoms outside this velocity interval - faster atoms and 

atoms slower than the final velocity - will not be affected (almost). 
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As each location z within the magnet corresponds, as given in eq. (4), 

to a resonant velocity, every atom within the affected velocity inter- 

val will find its resonant point z and will stay in resonance till the 

exit of the magnet. All atoms of the decelerated interval will thus 

have nearly the same velocity at the exit of the magnet. Therefore the 

resulting velocity distribution is highly compressed to some m/s 

(s.below). The final velocity may be choosen over a broad range in- 

cluding zero. In order to get the atoms at rest outside the magnet, 

the laser frequency is tuned into resonance with a sufficiently slow 

velocity group at the exit of the magnet, allowing the atoms to slow 

down further, when they walk out of resonance [3]. 

In first experiments using this technique, the production of a steady 

flow of cooled sodium atoms with a temperature below I00 mK and a 

density of about 105cm -3 was demonstrated (for details see e.g.[3]). 

The second general cooling scheme uses fast frequency modulation 

techniques to compensate optical pumping and to keep the resonance 

condition (without magnetic fields) [4]. 

In alkali spectra (e.g. Na) the transition =S,/= (F=2) = =P~/= (F=3) 

does not provide a completely ideal two-level system in zero magnetic 

field; because of the relatively small hyperfine splitting of the 

upper level and the limited perfection of the circular polarization of 

the laser light, the atoms can also make the transition 2SI/2 (F=2) 

=Pa/2 (F=2) and the upper level can decay to the level =S,/= (F=I) which 

is out of resonance. To compensate for this optical pumping a second 

frequency in the cooling laser beam inducing the transition 2SI/2 (F=I) 

= 2 ps / 2 (F=2) can repump the atoms into the level = S, / = (F=2) via the 

transition 2P3/2 (F:2) : 2S,/= (F=2) . 

This second frequency can be provided as one of two sidebands of a 

frequency-modulated laser beam; in the case of the sodium D= line the 

difference frequency would be 1712 MHz. For this purpose the laser 

beam is, for example, sent through an electro-optic phase modulator 

[4] that is driven at half the desired difference frequency. In case 

of a sufficient modulation index about 35~ of the incoming intensity 

can be transfered to the first-order sidebands. 

The problem of maintaining the resonance condition for the decelera- 

ting atoms is solved in this scheme by a fast tuning of the laser fre- 

quency synchronously with the rapidly changing Doppler shift. This 

again can be achieved by electro-optic modulation techniques, if the 

laser beam with the two frequencies is sent through a second electro- 

optic modulator, the driving frequency of which is chirped in the 

right way - in the sodium experiment, for example, from 5 MHz to 1000 
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MHZ within about 1.5 ms. This will produce a pair of sidebands which 

stays in resonance with the decelerating atoms in both hyperfine sub- 

levels of the ground state, if the carrier frequency is chosen 

correctly [4], 

intwnsity 

~"3 1,-2 

~ :  Schematic frequency spectrum of the cooling laser beam behind 
the two electro-optic modulators (EOM). The cooling and repumping 
sidebands are marked 243 and i~2. 

Fig. 3 shows the experimental scheme for this experiment, the sideband 

spectrum is schematically shown in Fig. 2. 

In the scan method the deceleration a 'has to match the scan speed 6L 

of the laser frequency; assuming constant deceleration the scan speed 

is almost constant, 

• {~I 
VL = -- (6) 

and the frequency varies linearly in time, starting periodically red 

shifted at the laser frequency ~,. 

PL (t) = u, (l+~t) (7) 

This frequency ~. is in resonance with fast atoms v, at the beginning 

of each cooling cycle. During the sideband is swept over a frequency 

interval ~L these fast atoms stay in resonance and slower atoms will 

get into resonance. Thus at the end of each cooling cycle the corre- 
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sponding velocity interval Av = ~L/A is compressed into a narrow 

velocity distribution (s.below) at the final velocity vn-~v. 

.1,,.r~tlsl III / ' ; /  I11 . / 2 "  

.. £_-_3, ....... , .z. , , -  

o v s n c h a ~ s r '  ~ ~l 
d e t e c t  :).onchambet, to t ~  

r i n g l a s e r  

H - 
1,7 aHz O-1GHz | ....... t 

AOM of f  

on li 
gate i ...... , ,  ' 

' i'z m~ ' : t  

Fig.3: Schematic of atomic beam cooling experiment. The cooling laser 
output is fed through an acousto-optic shutter, a LiTaO~ travelling- 
wave electro-optic modulator (EOM) which provides the frequency-swept 
sidebands, and an additional EOM to provide the F=I atom recovery 
sideband. The ~-polarized cooling laser beam is carefully "mode match- 
ed" to the weakly diverging atomic beam (-3 mrad full angle). The 
detection system for the fluorescence light is not shown. 

In our experiments the scan interval was limited by our microwave 

equipment to ~ IGHz corresponding to a velocity interval of ~600 m/s. 

After each cooling scan, which takes about 1 ms, the swept sideband 

moves very fast within ~200 ~s back into the starting position beginn- 

ing the next cooling cycle. During this time fresh incoming, uncooled 

atoms fly only ~i m before they get into resonance in the next cooling 

cycle. Thus all atoms slower than the starting velocity v. and within 

Av will be cooled. 

In the first experiments with this second scheme [4,5] the resulting 

temperature within the cooled atomic beam was below 50mK with a den- 

sity of l0 s atoms per cm s . As the slow atoms move only a short dis- 

tance during the cooling cycles, the resulting pile-up of slow atoms 

forms a nearly constant flow of cold atoms as in the previous scheme. 
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F~g.4: Sodium-atomic-beam cooling using a frequency-chirped laser. 
Trace a), cooling laser off. The D2 transition shows the velocity 
distribution of the F=2 ground state as well as the frequency markers 
from the perpendicular probe beam. The vertical dashed line marks the 
Position of the F=3 resonance with zero velocity atoms. Trace b) - d), 
cooling laser sideband is swept -IGHz (~v=590 m/s), carrying atoms to 
lower velocities where they are left (blackened peaks) when the cool- 
ing laser is cut off and the velocity distribution is measured. The 
final velocity in trace b) is ~290 m/s, in trace c) ~40 m/s, and in 
trace d) ~ -130 m/s (!). The apparent weakening of the slow-atom peak 
is partly because fewer atoms are available, when the sweep starts 
below the velocity distribution maximum and for geometrical reasons 
(s.below). The figures also show "actions" by the other (unused) 
sidebands. 

For probing the velocity distribution we used a second dye laser beam, 

Which was split into a Doppler free beam - perpendicular to the atomic 

beam - and a beam crossing the atomic beam with a small angle (~30 ° , 
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see Fig.3). The frequency of this probing laser was slowly tuned over 

the Doppler profil of the 2Si/s (F=2) ~ 2Ps/2 (F=3) transition. The 

laser induced fluorescence signal was only periodically counted within 

a ~50 ~s time interval during the fly-back time of the cooling side- 

band. During this time the cooling laser beam was shut off by the 

acusto-optic modulator. Thus optical pumping and transient effects 

were avoided. 

Because of the 30 o crossing angle our velocity readout scale is com- 

pressed by a factor cos30o=0.866. Fig. 4 shows the result. Because of 

the saturation in the probe beam being 2...3 and the Doppler free beam 

being ~<I the whole width of the probe beam can be explained - in 

comparison to the width of the Doppler free width - by saturation 

effects (within the momentary velocity resolution). As I0 MHz natural 

width corresponds to a Doppler broadening by 6 m/s, we can estimate a 

residual velocity width of less than 5 m/s (for the more complicated 

details see [4,6]). 

This result is in good agreement with our Monte-Carlo simulation of 

the cooling process [7,8] and the numerical integration of the Fokker- 

Planck equation [8]. 

Relay cooling 

A scan width of 1 GHz corresponds to a cooled velocity internal of 

about 600 m/s. If the fixed sideband for the transition F=2 = F=3 is 

placed near the average velocity (~600 m/s) it is possible to cool 

twice the single sideband cooling interval by the so called "relay 

cooling" scheme. 

For this purpose the frequency sweeps of the fast tuned sidebands 

(cooling and flyback) have to be almost symmetric and should start at 

zero or not more than 1/2 of the natural linewidth from zero. Then 

both fast tuned sidebands have - alternating - the right tuning sign 

and tuning speed. 

Fig. 5 explains schematically the situation. 
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Fig. 5:Scheme for the combined 
action of both sidebands and the 
carrier, to double the cooling 
intervall. It is one cooling 
period show starting at the top 
The fresh incoming atoms are 
omited in this representation. 

The "left" sideband decelerates the fast atoms - e.g. 1300m/s ~ 700m/s 

- down to a medium velocity, resonant with the carrier, and during the 

"fly-back" of the "left" sideband the "right sideband" takes them over 

and cools them further down together with the slower atoms - e.g. 

700m/s ~ 100m/s. In case the atomic beam apparatus is long enough (for 

2~Na - 2m) relay cooling stops or decelerates so essentially the whole 

atomic beam (for Z3Na ~v = 1200m/s) with 1 GHz scan width. Experiments 

showed that this scheme works satisfactorily, if the atomic beam is 

long enough and when the laser power at this longer beam line is still 

sufficient. [6]. 

Higher Order Sideband Cooling 

In case of enough laser and microwave power it is also possible to use 

the second order sideband for cooling. 
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Fig.6; Velocity distribution of a laser cooled sodium atomic beam 
Trace a,) cooling laser off; only the F=2 part of the velocity dis- 
tribution is shown. The vertical line indicates zero velocity. Trace 
b) cooling laser on. C marks the position of the carrier frequency and 
Sz and S= mark the chirping interval and the final position of the 1st 
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oder (S,) and 2nd order ($2) sideband. The distance between $I and S~ 
final positions corresponds to the I00 MHz final offset (I00 MHz corr. 
60m/s). In trace c) this offset is 170 MHZ for demonstration and the 
carrier position is drastically shifted to ~80 m/s. C marks the posi- 
tion of the left 1,7GHz sideband of the carrier acting on the ~ I000 
m/s faster F=2 atoms (C is in resonance with the some velocity group 
in F=I and slow F=2 atoms!) Therefore the same situation as shown in 
trace b) and c) (left part) repeats at higher velocities as shown in 
trace d). 

Applying a 1 GHz chirping interval for the microwave driving field of 

the EOM, the 1st order sideband is swept 1 GHz and the 2nd order side- 

band is swept 2 GHz. Of cause the scan speed of the 2nd order sideband 

is doubled too. So one has to take care that the laserpower in this 

sideband is sufficient to match the conditions in eq. (3) and (6). 

In order to demonstrate that this scheme doubles the decelerated 

velocity interval too, we performed the following experiment: the 

laser frequency was split into a triplet by the first EOM: the 

"carrier" (~80~) and two ist order sidebands 1,712 GHz apart (~i0~ 

each). The carrier was located at some slow velocity (velocities are 

given for the F=2 population). But the chirping interval for the 

second EOM was choosen to be 100-1060 MHz (170-1060 MHz). Therefore 

the ist order sideband stops i00 MHz (170 MHz) apart from the carrier 

and the 2nd order sideband 200 MHz (340 MHZ) apart from the carrier 

producing so two final velocity groups. 

The apparatus used for this experiment was similar to the one shown in 

Fig.3; but instead of using the Doppler free probe beam as zero 

marker, we retroreflected the ordinary probe beam. This produces 

"mirror images" in the readout of the F=2 velocity distribution (on 

top of the small F=I population). The center between two "mirror 

images" defines zero velocity. Fig. 6 shows the experimental results. 

From this Figure we see that both sidebands - the ist and the 2nd 

order sideband - decelerate the atoms. That means that the 2nd order 

sideband actually decelerates essentially the whole atomic beam. 

The density of the two final velocity groups depends on the probing 

location in the atomic beam and the position of the carrier frequency. 

In trace b) of Fig.6 the carrier is in resonance with 350m/s atoms and 

the ist order sideband catches most of the atoms and the velocity 

distribution gaining so the higher density. 

A Monte-Carlo simulation [7,8] can calculate the various dependencies. 

Fig.7 shows our numerical result for a similar situation as given in 

Fig.6. In the experiment the probing position was located at about 

s2=150cm. The sideband C'and its "subsidebands" were omitted during 

the calculation. The calculation shows the main features in satisfac- 
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tory agreement. 
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F!~.7: Plot of the longitudinal velocity distribution (in arb. units) 
along the atomic beam as a function of the longitudinal position sz 
(in cm). The plot shows the steady state result for an experimental 
situation as given in Fig.6. 

Properties and Handling of Cooled Atomic Beams 

As result of the numerous spontaneous emmissions, some longitudinal 

momentum is transfered into transverse momentum. The resulting velo- 

city width vT (rms) of this "transverse heating effect" by n spon- 

taneous emmissions reads 

vT(rms) = vr (n13)*/' (I0) 

vr = ~k/M (11) 

with 

1 
n = -- (2ksT/M) '/2 

Vr 

Ke : Boltzmann-constant 

T: evaporation temperatur 

this transverse velocity spread becomes 

VT (rms) = ( 2kBT~Zk2) "/4 

9M 3 
(12) 
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The transverse velocity distribution of this beam may be further 

reduced by transverse laser beams, the frequency of which is tuned 

about one halfwidth to the red of the center frequency. Thus the 

saturation of, and correspondingly the spontaneous force on, the slow 

atoms by the transverse laser beams increases for the atoms which are 

moving towards a transverse laser beam [9,10]. The effect will be at 

maximum when the red detuning 6w is [8] 

aw = Z ( __l+2s° ),/2 

2 3 

7: natural linewidth (FWHM) 

so: saturation on center frequency. 

(13) 

Another possibility of transverse cooling using dipole-forces is given 

in [II]. 

The velocity-dependent force will also reduce the final longitudinal 

velocity distribution [4]: a counter-propagating laser beam, which is 

tuned slightly red of the absorption frequency of the slow atoms, will 

decelerate atoms, which remained faster than the average, more than 

slower ones, when they move out of resonance. This laser beam could 

be, for example, the carrier frequency of the cooling laser, if the 

chirping method is used for cooling. This frequency may be permanent 

in the cooling beam. This velocity-controlling effect is also respon- 

sible for the longitudinal velocity width just after cooling [8]. 

For precision experiments it will be of special interest to separate 

the cold atoms from the hot (fast) atoms. 

ofomic beom 

S|OW L 

tuseP beam 

fast  

Fig.8:Geometry for 
atomic beam deflect 
-ion by a transverse 
laser beam 
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One way of separation is simply to apply a second "two-frequency" 

transverse laser beam as shown in Fig. 8. If the intensity profile of 

this laser beam has the correct shape, only the slow atoms will be 

deflected and these atoms will show no further increase in velocity 

spread. The transverse laser beam providing the necessary spontaneous 

force to match the radial acceleration ar = ~o2/r (9o : average velo- 

city of the slow atomic beam) has to have a saturation profil like 

1 
s (r) = (14) 

rvr - 2 

TV02 

or for s ~<i 

s (r} = __r v02 . _1 (15) 

vr r 

This means that a cylindrical lens gives the proper intensity profile 

for the purpose of bending an atomic beam of slow atoms. For a beam 

with 50 m/s average velocity and 5 mm diameter a lens with a focal 

length of 50 mm and a transverse laser beam of 20 mm waist only a few 

milliwatts are sufficient to bend the slow atomic beam ~40 e from the 

axis [6,12]. Additionally, the transverse velocity spread will be 

reduced in the bending plane as a by-product of the bending mechanism. 

The result of this bending scheme is thus a slow atomic beam, the 

direction of which is unconstrainedly selectable and which is unper- 

turbed by fast atoms. 

One application of cold atomic beams is clearly its use for optical or 

microwave frequency standards. 

The great interest in cold atoms for optical frequency standards is 

twofold: reduction of Doppler effects and prolonged interaction times. 

For cold atoms the second-order Doppler effect for optical transitions 

may be less than 10 mHz. The interaction time of the light field with 

cold atoms may well exceed the interval of is, offering spectral 

widths in the sub-Hz regime for selected transitions, Doppler-free 

schemes presupposed. 

There are two main concepts for optical frequency standards using cold 

atomic beams. The first one uses the cold atomic beam mainly for 

filling atom-traps, which form the essential frequency discriminator 

of an optical frequency standard. The second one makes full use of the 

monochromatic velocity distribution of cold atomic beams. 

The monochromatic atomic beam may be deflected through 90 o with a 
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dipole magnet or a transverse laser beam (s.above). The resulting "Za- 

charias fountain '~ atomic beam would give an ideal opportunity for two- 

zone Ramsey excitation with very slow atoms going a second time 

through the same interaction region, when they are free falling down 

again [4,12]. But also the horizontal, separated, and cooled beam is 

of great interest for precision measurements in the ~p/~10 -*~ regime. 

Some candidate atoms are given in [i0]. 

Other applications for cold atomic beams are clearly collision phy- 

sics, surface physics, photon statistics, quantum effects (Bose con- 

densation), polarized targets or isotope separation. 

This work was supported by the Deutsche Forschungsgemeinschaft° 
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These last few years have seen major advances in the possible 

ways to control atomic motion using laser light. It is now possible to 

slow down and even to stop an atomic beam [1-3], and the first 

observation of optically trapped atoms has been reported [4]. It is 

therefore an important task to try to describe in the most accurate way 

the basic phenomena which are at the origin of exchange of momentum 

between atoms and resonant light, and to interpret them in terms of 

elementary processes as absorption and spontaneous or stimulated 

emission of photons by the atom. 

In a plane running wave, this description is simple : stimulated 

emission plays no role, so that the atom only undergoes fluorescence 

cycles involving the absorption of a laser photon (gain of momentum ~ 

for the atom), and the emission of a fluorescence photon (zero average 

change of atomic momentum). The average force acting on the atom is 

then : 

~= n ~ 

where n is the average number of fluorescence cycles per unit time, 

which for a two level atom saturates to the value F/2 at high laser 

intensity (U-* is the lifetime of the atomic excited level in seconds}. 

This force is the so called "radiation pressure force" or "scattering 

force" (see for ex. [5]). 

When several plane running waves are simultaneously present, the 

situation becomes more complicated. Stimulated emission can play an 

important role, since redistribution of photons between the waves may 

occur, via cycles involving absorption of a photon from one wave 

(momentum ~k,), and stimulated emission of a photon into a second wave 
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(momentum ~k2). This redistribution occurs at a rate given by the Rabi 

frequency ~, of the atom driven by the laser light, and then leads to 

forces whose order of magnitude is given by 

f. ,,. - %, 

Since the Rabi frequency does not saturate with light intensity, this 

force f' may be considerably larger than the force f found in a single 

plane running wave. 

Our goal in this paper is to present various possible ways to 

study atomic motion in presence of both stimulated and spontaneous 

processes. We will consider here the simple problem of a 

one-dimensional motion along z axis, in two plane counterpropagating 

running waves. We will discuss the possibility of using such a standing 

wave for damping the atomic motion, and we will study the limits of 

this cooling mechanism. 

At this date, three experimental groups have published results 

exhibiting evidence for a cooling of free atoms in a standing wave 

[6-9]. In the two first experiments (which were actually 2-D [6] and 

3-D [7] experiments), the situation was chosen such as stimulated 

processes play a weak role : the Rabi frequency ~ was smaller than the 
I 

natural width U. The cooling has then been observed for a negative 

detuning ~ = ~ - ~A (~ : laser frequency, ~ atomic frequency, all in 

rad/sec), ~ being of the order of the natural width. In the second 

experiment [8] which has been realized in our laboratory, the situation 

was reversed : the Rabi frequency was two orders of magnitude larger 

than the natural width, and the cooling then occured for positive 

detuning, much large~ than the natural width. We will see in this paper 

how to interpret these results, and in particular, the change of sign 

of the detuning leading to cooling when the laser power is increased. 

This paper is organized as follows. The first part A is devoted 

to a study of the problem using Optical Bloch Equation (O.B.E.). We 

show how it is possible to derive from this equation the expression of 

the radiative force to first order in the atomic velocity. We also give 

some examples of results obtained by a numerical calculation of this 

force, valid for any atomic velocity, and based on a continued fraction 

expansion of the O.B.E. solution [12-13]. The second part deals with 

the dressed atom approach to this problem, which appears to be very 
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efficient to describe the high intensity limit ~ ~ F. We present a 
I 

Monte-Carlo simulation of the atomic motion of this dressed atom, which 

has the advantage of handling easily fluctuations caused by spontaneous 

emission processes. This simulation then gives us an estimation of the 

final energy of an atom cooled by a strong standing wave. It also 

suggests the possibility of observing a channelization of the atoms in 

the nodes of the intense standing wave. 

I. THE OPTICAL BLOCH EQUATIONS APPROACH 

We shall treat here classically the atomic motion, assuming that 

the atom is localized around a point ~, with a spatial spread ~ much 

smaller than the light wavelength A. The average force acting on the 

atom at point ~, with a velocity ~, is then related to the gradient of 

coupling V,L (~) [5,14] : the atom-laser 

Pv 

I.i The Optical Bloch Equations 

The atom-laser coupling can be written, for a plane standing wave 

parallel to the z axis, and using the RWA and electric dipole 

approximations : 

- I  t |~L t ) 
V ^ L ( ~ )  = - d .  6 ( z )  i e > < g l  e ~L + I g > < e l  e ( 2 )  

This coupling is characterized by the Rabi frequency ~L (z) : 

2 2 
- -  cos kz = - ~.~(z} (3)  

g is the atomic ground level and e the excited one. We have noted ~ the 

atomic dipole moment, and we have assumed that the laser is in a 

coherent state so that we can describe it classically. The coupling (3} 

is then zero at the nodes of the standing wave, and maximal at the 
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antinodes. Introducing now the three quantities : 

i,~L t -J~L t ) 
S, = e~ e + pg, e /2 

t~ t e-t.t) 
S= = e. e L - pg, /2i 

S~ = (p.. - p,~)/2 

(4) 

where p is the reduced atomic density matrix, the average force f(z,v) 

can be written : 

f(z,v) = ~k~,. sin kz. $I (z,v) (5) 

S (z,v) is the stationary value of S for an atom at point z, with a 

velocity v along Oz. 

The evolution of the three quantities S z ,S 2 ,S 3 is given by the 

following Optical Bloch Equations (O.B.E.) [15] : 

S = - S I F/2 + ~ S 2 

S= = - ~ S, - S F/2 - ~, (z) S s 

a s = ~. (z) S z - F S= - F/2 

(6) 

From these equations, one can in principle determine S, (z,v) for any z 

and v and therefore calculate the value of f(z,v). 

1.2 The force on an atom at rest : the dipole fQrqe 

Let us consider first the case of an atom at rest. The solution 

of (6) is then easily obtained : 

St(z°0) = (5) 
8 = + F 2/4 + ~= (z)/2 

So that 
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d ~ ~z (z)/2 
f(z,0) = - -- Log 1 + * (6) 

This is the so called "dipole force", which derives from a periodic 

potential, so that the average over a wavelength of f(z,0) is zero. It 

has been suggested to use such a force to trap atoms near the nodes or 

the antinodes of the standing wave, depending on the sign of ~ [16-18]. 

1.3 The force on a slow atom : radiative cooling 

We consider now low velocity atoms. The force f(z,v) can then be 

obtained by an adiabatic expansion of the forced solution of O.B.E. The 

parameter 6 of the expansion is the relaxation time U-* of the atom, 

divided by the time X/v needed for the atom to travel over a 

wavelength : 

F- ~ 1 kv 
= - (7) 

X/v 2~ r 

If ~ is small compared to I, one can assume that the internal 

state of the atom follows quasi-adiabatically the external motion. The 

force can then be written to first order in v : 

f(z,v) = f(z,0) - m~ v (8) 

where T is given by [9] : 

m7 = ~ -- <[F(z,T) , F(z,0)]> 

F{z,T) denotes the force operator 

(9) 

- dV, L/dz (in Heisenberg point of 

view), and the correlation function of F contributing to eq. 9 can be 

evaluated by means of quantum regression theorem. The result of the 

calculation is [5] : 
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s °I mY = - ~k 2 --- (I - s) - 2 -- s = tg = kz (i0) 
(I + s) 3 2 + F2/4 U 

where the saturation parameter s is : 

o ,  2 (z)/2 
1 

S = = 4 S o cos2kz (Ii} 
82 + U 2/4 

s o denotes the saturation parameter obtained if only one of the two 

travelling waves is present. This damping coefficient mY can now be 

averaged on a wavelength, and we obtain [13] : 

__ 1 'L" 
m7 = -~k 2 s o (i + 2s 0 ) 

(I + 4s0)a/2 = + Uz/4 

- 2 -- (i + 6s + 6s 2 - (i + 4s )3/2) 
[" 0 0 0 

(12) 

This average coefficient describes the efficiency of a standing wave 

for damping the atomic motion. 

In the low intensity case (s o << i) , one gets : 

23U 
m~ = ~k 2 s ~ ~k 2 (13) 

0 
82 + F=/4 

This is a well known result which can be obtained by adding simply the 

two radiation pressures of the two counterpropagating waves [20]. It 

leads to a cooling when the detuning 8 is negative (optimal value 

- U/2) which can be interpreted by noting that due to the Doppler 

effect, the atom in such a configuration is more sensitive to the 

counterpropagating running wave than to the copropagating one : it is 

therefore decelerated. 

At high intensities (s o ~ 1) and high detunings (~3[~ U), the 

force changes its sign : it becomes a damping force for positive 

detunings, and an accelerating one for negative detunings. Furthermore 

one notes that the order of magnitude of m~ changes. The damping 

coefficient can be much higher than the limit obtained in (13). One 

indeed gets : 
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>> 8 >> U ~ m7 ~ ~k 2 
I F 

This change of sign of the force, 

coefficient is an evidence for 

emission in this regime. 

- - D  ~k 2 (14) 

and the increase of the damping 

the predominant role of stimulated 

1.4 Case of arbitrarily high velocities 

When the atomic velocity is arbitrary, it is no longer possible 

to get an analytical expression for the force. But it is possible, 

using a continued fraction expansion method for (6), to get a numerical 

estimation of the force (5} [12-13]. Using this method, we have plotted 

some results in fig. i. At low intensity (fig. l.a : 8 = + Y/2, 

~I = U/3), one can check that the force is nearly equal to the sum of 

the radiation pressures of the two counterpropagating waves. In 

particular, it is never a damping force for such a positive detuning. 

When the intensity increases, this conclusion is reversed, at least for 

low velocities, as it can be seen in fig. 1.b .... l.e, plotted for 

increasing detunings ~ and Rabi frequencies ~ . For ~ and ~ large 
I I 

compared to the natural linewidth F, the curves have the following 

characteristics : 

(i) For low velocities (kv ~ Y/3), as expected, the force varies 

linearly with the velocity, with a proportionnality coefficient given 

in eq. (~12). 

(ii) The force is maximum for velocities such as kv N Y/3, and 

can be much higher than the radiation pressure ~kU/2 found if only one 

of the two counterpropagating waves is present. For example in 

fig. l.e, for ~ = i0 ~ = 500 F, the maximal force is N 40 (~kU/2). 
I 

(iii) The force then decreases as 1/v until v reaches a critical 

value vc, whose value increases with 8 and ~i" 

(iv) When v is larger than v c , resonances appear in f(v) 

(Dopplerons resonances [21]) and the sign of the force changes : it 

becomes a cooling force for 8 < 0 and an accelerating one for ~ > 0. 
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_Figure I : Variations of the average radiative force {unit HkF/2 : 

resonant radiation pressure) acting on an atom in a standing wave as a 

function of the atomic velocity (unit F/k : Doppler effect equal to the 

natural linewidth). These curves have been realized for increasing 

detunings 8 and Rabi frequencies ~ 
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It is difficult to interpret all these characteristics in the 

framework of this theory based on a continued fraction expansion. On 

the contrary, we are going to see now that the dressed atom point of 

view gives in the strong intensity limit a clear interpretation for the 

various characteristics of the force. 

2. THE DRESSED ATOM POINT OF VIEW [22,23] 

2.1 The microscopic Sisyphus myth 

In a strong standing wave, the energies of the dressed levels, 

i.e., the eigenstates of the atom plus laser-field system, oscillate 

periodically in space, as the Rabi frequency ~ (z) in (eq. 3). Figure 2 

represents these dressed states for a positive detuning (~L > ~0). At a 

node [~i (z) = 0], the dressed states il,n> and ~2,n> respectively 

coincide with the unperturbed states ~g,n+l> and le,n> (an atom in the 

ground state g or in the excited state e, in the presence of n+l or n 

laser photons). Out of a node [~, (z) W 0] the dressed states are linear 

combinations of ~g,n+l> and ~e,n> and their splitting ~[Sz+~ (z)] ~ is 

maximum at the antinodes of the standing wave. Consider now the effect 

of spontaneous emission. An atom in level ~l,n> or ~2,n> -each 

containing some admixture of }e,n>- can emit a spontaneous photon and 

decay to level ~l,n-l> or ~2,n-l>- each containing some admixture of 

~g,n>. The key point is that the various rates for such spontaneous 

processes vary in space. If the atom is in level il,n>, its decay rate 

is zero at a node where il,n> = ~g,n+l> and maximum at an antinode 

where the contamination of ~l,n> by le,n> is maximum. In contrast, for 

an atom in level ~2,n>, the decay is maximum at the nodes, where ~2,n> 

is equal to ~e,n>. We can now follow the "trajectory" of a moving atom 

starting, for example, at a node of the standing wave in level ~l,n+l> 

(fig. 2). Starting from this valley, the atom climbs uphill until it 

approaches the top (antinode) where its decay rate is maximum. It may 

jump either into level ll,n> (which does not change anything from a 

mechanical point of view) or into level ~2,n>, in which case the atom 

is again in a valley. It has now to climb up again until it reaches a 

new top (node) where ~2,n> is the most unstable, and so on. It is clear 

that the atomic velocity is decreased in such a process, which can be 
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Figure 2 : Laser cooling in a strong standing wave. The dashed lines 

represent the spatial variations of the dressed-atom energy levels 

which coincide with the unperturbed levels (dotted lines) at the nodes. 

The solid lines represent the "trajectory" of a slowly moving atom. 

Because of the spatial variation of the dressed wave functions, 

spontaneous emission occurs preferentially at an antinode (node) for a 

dressed state of type 1 (2). Between two spontaneous emissions (wavy 

lines), the atom sees, on the average, more uphill parts than downhill 

ones and is therefore slowed down. 
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viewed as a microscopic realization of the "Sisyphus myth" : Every time 

the atom has climbed a hill, it may be put back at the bottom of 

another one by spontaneous emission. 

Such a picture can be used to derive quantitative results for the 

average force acting on the atom [22]. These results appear to be in 

perfect agreement with the ones obtained by the continued fractions 

method, provided that the atomic velocity is smaller than v c 

{results i, ii and iii). For velocities higher than v c , one has to 

modify the previous picture and to take into account the Landau-Zener 

transitions, which can occur at each node of the standing wave, from 

one level li,n> to the adjacent level lJ,n>. For certain velocities, 

the probability amplitudes for such transitions interfere 

constructively for two successive nodes, and the radiative force then 

exhibits a resonance. In ref. [24], using a method close to the dressed 

atom approach, the authors show how to calculate, with a relatively 

good precision, the position of these resonances. 

2.2 Monte-Carlo simulation of atomic motion in a 

strong standing wave 

In order to determine all the characteristics of the cooling of 

atoms in a strong standing wave, in particular the final temperature of 

cold atoms, we have developped a numerical simulation of the atomic 

motion in the standing wave. This simulation consists of doing an 

integration step by step of the motion presented on fig. 2. Each step 

consists in two phases : we calculate first the new position and the 

new velocity of the atom as a function of the old position and velocity 

and of the force seen on the dressed level occupied at this time. Then, 

we randomly decide an eventual change of dressed level, with a 

probability law given by the dressed atom theory. Note that here the 

atomic velocity is not constant but it varies when the atomgoes uphill 

or downhill. This is in contrast to the continued fraction method in 

which one imposes a constant velocity to the atom in order to calculate 

the force. Actually the two methods give similar results as soon as the 

atomic kinetic energy my=/2 is much larger than the height of the hills 

N ~,/2. On the contrary, when the two parameters are on the same 

order, the numerical simulation of the dressed atom picture is a priori 

much closer to reality than the continued fraction method. 
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Examples of results of this numerical simulation are given in 

fig. 3 for Cesium atoms irradiated by a laser wave resonant with the 

resonance line (A = 852 nm, U -I = 30 ns). The parameters of the 

standing wave are ~ = 6 ~ = 80 U. This value of ~ is close to the one 
I I 

we had in the experiment of ref. 8, and the value of $ is then chosen 

in order to optimize the force for velocities around kv = F (see 

fig. i). Initial velocities are randomly chosen with a gaussian law, 

centered on v = 0, and with a full-width-half maximum (FWHM) of 5 m/s. 

One sees (fig. 3.a) that in a time of the order of I0 ~s, these 

velocities concentrate in a peak of FWHM 1.2 m/s, which corresponds 

precisely to a kinetic energy of the order of the height of the hills. 

The typical time constant of this damping is 2 ~s, which is in good 

agreement with the one deduced from eq. 12 (1.8 ~s). Atoms are then 

more or less trapped in the valleys of fig. 2, and the cooling 

mechanism described above becomes much less efficient. The atomic 

kinetic energy mv2/2 then satisfies : 

mv 2 ~, 

2 2 
(15) 

This has to be compared to the well-known limit of radiative cooling in 
/ 
a weak standing wave [ 5] : 

my 2 ~F 

2 2 
(16) 

2.3 Channelization of atoms 

Equation (15) gives the atomic energy after a time of few ~1 

(eq. 12). Actually, we have observed numerically (fig. 3.b) a new 

decrease of the atomic energy, with a much larger time constant 

(~ i00 ~s). Simultaneously atoms accumulate at the nodes of the 

standing wave, as it can be seen on position profiles of fig. 3.c. The 

final curve, after an interaction time of 500 ~s, gives dz ~ A/40 and 

Av N 0.2 m/s (the product dx.~ is then I0 ~ so that we are at the 

limit of a classical treatment of atomic velocity). 
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FiGure 3 : Numerical simulation of atomic motion (Cesium atom) in a 

strong standing wave (~ = 6 8 = 80 F). 

3.a. Evolution of velocity profiles 

3.b. Evolution of average quadratic velocities 

3. c. Evolution of position profiles (modulo one wavelength). 
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This accumulation of atoms at the nodes of the standing wave, 

that one can call "channelization", is not strictly speaking a 

trapping, but rather a dynamical equilibrium. Atoms oscillate around a 

node on a level of type I, then jump on a level of type 2 on which they 

"travel" over a fraction of wavelength to fall back on another level of 

type i, near another node. 

The first part of this cooling process has been observed in our 

laboratory, with experimental conditions very close to the ones chosen 

here [8]. The experimental results confirm the theoretical predictions 

exposed here. On the contrary, the channelization of atoms in the 

standing wave has not yet been observed. Several techniques could be 

considered for this. First an observation of the atomic spectrum of 

fluorescence or absorption should give a hint for the spatial 

distribution of the atoms. Second, one could think of a Bragg 

diffraction technique for probing such a spatial ordering of atoms. 

To conclude, let us emphasize the potentialities of these 

"stimulated" forces for many applications, for instance for slowing 

down an atomic beam : as we have seen, the forces that can be realized 

are much greater than the usual radiation pressure which has been used 

up to now for this purpose. The stopping distance could then be reduced 

by at least one order of magnitude, which would be of special interest 

for the realization of compact atomic clocks using slow atoms, 
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1. Introduction 

Experimental breakthroughs such as cooling of one electromagnetically trapped ion [1] 
and realization of magnetic [2] and all-optical [3] traps for neutral atoms have demonstrated 
tangible mechanical effects of laser light on atomic particles. The recent "quantum jump" 
observations [4-6] relying on laser cooling are examples of the ultimate sensitivity of 
spectroscopy, a single atomic particle. It may be, though, that most applications of light 
pressure will instead strive for high resolution, utilizing the low temperature to overcome the 
second-order Doppler shift [7]. To increase the signal-to-noise ratio, such experiments would 
normally be carried out on many particles. But, aside from applications, the very combination of 
many particles and low temperature may in itself give rise to novel phenomena. These are the 

theme of our paper. 
Numerical simulations of a one-component plasma [8,9] have quite a while ago indicated 

that, at low enough temperatures, the Coulomb interactions force it to crystallize. Analogous 
crystallization of ions in electromagnetic traps [10,11] and in heavy-ion storage rings [12] have 
been discussed. The ensuing "Wigner crystal" would represent a new form of condensed 
matter. Its properties may be unusual, moreover the interaction between the particles of the 
frozen plasma are known and can conceivably be handled theoretically. Rigid few-ion clusters 
would also facilitate experiments on collective interactions with light of a small number of non- 
moving atoms. Until now such experiments have simply not been possible in the optical 
domain, an unfortunate circumstance as individual field quanta and assoc_Jated quantum 
effects can be detected easily only at optical and higher frequencies. 

At this writing clusters in ion traps have, however, not been observed. Whether unideal 
conditions of the experiments or fundamental physics are responsible, is not clear. Only very 
recently have we initiated [13] the theoretical study of laser cooling of interacting many-particle 

systems using the hypothetical periodic crystal as the first example. We have shown that, 
owing to the interference of light scattered from different ions, the laser only couples to a small 
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fraction of the phonon modes. In exchange, the coupling is so strong that the cooling rate per 
particle in the crystal is qualitatively the same as for a single trapped ion. In this paper we 

generalize the model of Ref. 13 to an arbitrary cluster with small-vibration excitations around 
the equilibrium. In particular, the statement that the cooling is "qualitatively the same" as for a 
single ion, is made precise. The analysis emphasizes the importance of the interactions 

between the small-vibration modes, but these remain unexplored. 
The prospect of a nearly ideal Bose condensate to quantitatively test and sharpen the 

theoretical understanding of many-body physics has driven intensive investigations into spin- 
polarized hydrogen [14], so far without decisive success. Magnetic and all-optical traps for 
neutral atoms, which offer sub-mK temperatures and density not curbed by the Coulomb 
repulsion, may in the long run deliver a new boost to the pursuit toward Bose condensation 
[15-17]. 

In this paper we analyze Bose condensation of trapped atoms. We also reiterate our 
suggestion [18] that, when two traps containing Bose condensates are brought close enough 
to each other, an oscillatory exchange of atoms between the traps emerges which is governed 
by the phases created in the spontaneous symmetry breaking associated with the Bose 
condensation. Finally, we discuss the Bose condensate in a trap as a test bench of the very 

fundamentals of statistical mechanics. 
In the rest of this paper we expand on these synopses. Crystallization of trapped ions is 

covered in section 2, and Bose condensation in a trap is the subject of section 3. 

2. Crystallization of trapped Ions 

Assume a cloud of N ions resides in a harmonic trap in which the oscillation frequencies 

of a single ion along the directions of the three coordinate axes would be v i, i=1, 2, or 3. 

Denoting the i th orthogonal coordinate of the ion e¢ = 1 ..... N with x ~i and the full coordinate 

vector with x% we write the total potential energy of the ion system 

o,, 
(1) 

When the temperature is lowered toward zero, the ions settle to a configuration which 

gives the global minimum of the potential energy. As an example, the projection onto the 1-2 
plane of the configuration for N = 18 ions that we believe represents the global minimum (but 

we cannot prove it) is shown in Fig. 1. Here we have set e2/4~o = M = 1, and chosen v 1 = 0.7, 

v2 = 1.3, and v3 = 2. Remarkably enough, the configuration does not have the reflection and 



inversion symmetries of the trap itself. 
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Figure 1. Projection onto the 1-2 plane of the equilibrium configuration of 18 

ions, for e2 /4~0  = M =1, V l  =0.7, v2=1.3, v3=2. The configuration does not 
have all inversion and reflection symmetries of the trap. 

Nonetheless, rigid clusters of ions have never been observed. It is an empirical fact that 
cooling of many-ion clouds stops at temperatures higher than cooling of a single ion, too high 
for crystallization. Spurious coupling of the kinetic energy between the micromotion and the 
secular motion of the ions, which is believed to take place as a result of the imperfections of 
the trap geometry [19], may be the reason. But it may also be that the collective motion owing 
to the Coulomb interactions of the particles at some point simply prevents the cooling, so that 
crystallization is impossible as a matter of principles. 

The latter is the issue we shall address, albeit indirectly: We assume that the ions have 
crystallized already, and study the dynamics of light-pressure cooling [20]. Cleady it is at least 
a necessary condition for crystallization that laser cooling can maintain the crystalline state. 

Let us assume that the remaining thermal excitations in the ion cluster can be treated as 
smafl vibrations. We thus expand the potential energy of the ion cluster up to second order in 

the displacements from the equilibrium {X~i}, 

1 ~ DI3j ,fk(xl3i.X~i)(x'Yk_x'fk) + , V({x~ i } )  = V({X°~i}) + ~" . , "'" (2) 

with 
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a2 V({Xai}). (3) 
D~i,~ = ax, l~j ax ~k 

As a symmetric matrix D has got real and, for a stable configuration, non-negative eigenvalues. 

We denote them by Mv2(k), where M is the mass of the ion and v(k) is the frequency of the 

eigenmode k = 1 ..... 3N. The corresponding orthonormal eigenvectors ~ai(k), in particular, 
satisfy the completeness relation 

~ i (k )  ~BJ(k) = 8,1~ 8i, j , (4) 
k 

We finally quantize the small vibrations of the ion cluster by writing the coordinate i of the 

ion c~ as 

x =X ~i+ ~i(k) (b k + b k), 
k ~/2Mv(k) 

(5) 

where bk is the annihilation operator of the excitation of the mode k. We are now in a position 
to write down the complete Hamiltonian for the system ions+light: 

t 1" 

ot q k 

.(ITi ~---~I f2>aa<ll E(+)(x¢)+h'c' l  . (6) 

Here the first term gives the internal energy of the two-level ions with upper and lower levels 2 

and 1 and optical transition frequency co, the second term is the energy of the photon modes 
labeled by the index q which stands for both the wave vector q and the polarization state, the 

third term is the energy of the small vibrations, and the final term i$ the dipole interaction. E (+) 
denotes the positive frequency part of the quantized electric field, and d is the dipole moment 

matrix element of the ion between the states 1 and 2. As the electric field in the Hamiltonian (6) 
is evaluated at the positions of the ions x a which in this theory are quantized dynamical 

variables, the possibility of affecting the center-of-mass motion of the ions by light, i.e., recoil 
effects, are fully included. 

We take the light intensity to be low enough that a photon absorption is always followed 
by spontaneous emission. Corresponding to the two interactions, second-order perturbation 
theory is a suitable method for attacking (6). We are especially interested in the changes of the 
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vibrational state. As the recoil effects proportional to the photon momenta are generically 
small, we shall only consider processes that are lowest nonzero order also in the photon 

momenta. These are cycles of absorption and spontaneous emission aided by absorption or 
emission of precisely one vibrational quantum in one of the modes k. 

We do not work out the details of the perturbation theory [13,21], but merely cite the final 
result [22]: The rate of a transition where the ion system starts out with n k vibrational quanta in 
the mode k and makes atransition to a state with n k + 1 quanta is found to be 

R(nk'-->nk+l ) = 
3t~ ,:2 7 0) 2 

(n k +1 ) 
8,Mv(k) c s 

% . ,  - 2 Re %°1 ] 
A2+7 s (A+v(k))2+ 7 2 (A+iT)(A+v(k) -i7) J" (7) 

Here *: is the Rabi frequency corresponding to the laser field strength, 7 the natural linewidth of 

the optical two-level transition of the ion, A = co - £~ is the detuning between the laser frequency 

D. and the ions' transition frequency co, e stands for the propagation direction of the laser 
beam, and the symbolic functional notation A specifies the treatment of the various directions 
in the integral over the directions of the scattered photons, 

d 2 u.~,"(k) v.~,P(k) A[uv] = j" dn [1 - (n. ~.l) l ~.p ei(X'~'xl~)'('" ") °Yc (s) 

The rate for a process in which the vibrational quantum number decreases, R(n k --~ nk'l ), 

is obtained from (7) by replacing nk+l with n k and v(k) with -v(k). The rates R(nk---~ nk±t ) 
represent within our assumptions all transitions where the center-of-mass motion of the ions 
may change, hence they completely determine both the time evolution of the cooling and the 

ensuing steady state. 
It is clear from (7) that all modes k can be cooled efficiently at the same time only if v(k) < 

7 for all k. Cooling of any mode k depends on transitions where the two-level resonance is 
aided by absorption or emission of vibrational quanta, and near-resonance is possible for all 
modes only if the range of the mode frequencies falls within the linewidth of the transition. 

Except for the resonance factors, the second significant ingredient of (7) are the 

functionals A. The spatial phases = exp(-iXO~.q) in (8) indicate that they convey the 

interference of light scattered from different ions in the cluster. The functionals A also contain 

the vibrational eigenmodes ~i(k). Although more apparent in the omitted derivation of (7) than 
in the result itself, the eigenmodes determine how the photon recoil kicks on individual ions 
add coherently to produce a change of the state of the collective mode k. All told, the factors A 
depend in a complicated manner on the equilibrium configuration of the ions. In view of the 
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shapes of the clusters, see Fig. 1, they can usually be analyzed only numerically, with great 
labor. 

However, using the properties of the coefficients A one very general conclusion can be 
drawn. Let us first assume that all vibrational frequencies are below the transition linewidth, so 

it is meaningful to expand (7) into a power series of v(k). Second, as a technical assumption 

we ignore the angular distribution of fluorescence from each individual ion. in practice this 
implies that we replace the factor in the square bracket inside the integral in (8) with its 
average over all angles, 2/3. Now, whatever is the distribution of the vibrational quantum 

numbers in the mode, the average energy is 

E k = < 1~v(k)nk> = 1fly(k) <nk>. (9) 

Because the rates R are linear in n k, the rate of change of energy of the mode k may be written 

dE k 

dt - < hv(k)[ R(nk~nk+l) -  R(nk~nk-1 ) ] > 

= {,"o° ° 4E M C2(z~2+7 2) * 

The new coefficients A are closely related to the old ones, 

k f ~ '~  i(X~-X~).(e - !1) oYc 
Auv = J dn ~ e u .~(k )  v-~ I~(k) , 

m~ 
(11) 

The crucial assumption we are going to make is that the total excitation energy is at 

every instant of time divided equally between the modes. Hence, the energy in any mode k 

satisties 

Ek = E = 3 ~ / _ _ ~ E k .  (12) 
k 

The closure of the eigenmodes ~ c,, Eq. (4), gives 

k =~--.w n n  = 4xN =0 
k k k 
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and summing both sides of Eq. (10) like in (12) we thus obtain 

d._EE = 2t~227(~ [ 1 - 2 A E  ] 

dt 3 M c2(A ~ + ~2) L fi (A2 + 72)J (t4) 

Equation (14) makes no reference to the mode structure, so it applies equally well to 
collective modes and to vibrations of a single ion. It basically states that if a single ion can be 
cooled, then so can an ion cluster. This was already the point of Ref, 13; here we have 
presented a more general and precise statement and proof. 

Leaving aside a number of technicalities, the necessary condition for (14) is that the 
mode-mode interactions keep all vibrations at the same temperature, E k = E. As a 
counterexample we pointed out in Ref. 13 that, in the absence of mode interactions and for a 
periodic crystal where the crystal momentum is conserved, a traveling laser wave would only 
couple to a fraction of the phonon modes which scales with the number of ions as N -1/3. 
Besides, half of the modes would be cooled and half of them heated. We reiterate our 
conjecture that the mode-mode interactions, or the absence thereof, is a major factor affecting 
the cooling of interacting many-ion systems. 

In summary, two features of the fundamental physics of ion clusters may be detrimental to 
cooling to temperatures low enough to achieve crystallization: First, the range of the collective 

excitation frequencies of the ions may be so broad (>_ 7) that all modes do not couple efficiently 
to light. Second, owing to the interference of light scattered from different ions, the cooling is 
distributed unevenly among the modes, and some modes may even be heated. It is relatively 
easy to check [22] that for the present-day experimental parameters the range of vibrational 
frequencies should not be a source of concern. In contrast, the mode-mode interactions cannot 
be discussed within the harmonic model of small vibrations where the modes are independent, 

3. Bose condensates in light-pressure traps 

Let us consider a noninteracting Bose gas in an isotropic three-dimensional harmonic 

oscillator potential which gives the atoms the oscillation frequency v. 
The Bose-Einstein statistics determines the number of atoms in the state n = (n 1 ,n2,n3) 

with energy Cn = 1'iv (nl+n2+n3), at temperature T, as 
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1 
N n - (15) (,.-~,~/kT 

e -1  

TO ensure positive occupation numbers, the chemical potential I~ has to remain negative. As 

Nn(p. ) are monotonously increasing functions of t~, the total number of atoms outside the 

ground state n = (0,0,0) is limited from above by 

N c = 2 . ,  Nn(t~=0) ' (16) 
n 1, n 2, n3>O 

a finite number. In the "high-temperature" limit kT/l~v ,, 1 the sum can be carried out by 

converting it to an integral and choosing ~ as one of the integration variables. The result is 

kT13 
N c = 1.202 ~vv) " (17) 

If the number of particles exceeds Nc, No = N - N c atoms are packed in the ground state which 

in the limit p --, 0 can accommodate an arbitrary number of them, This is known as Bose 

condensation. 

Our argument is a simple variation of the treatment of Bose condensation of a gas of free 

atoms as offered in elementary statistical-mechanics textbooks, except for the problem of the 

thermodynamic limit [23, 24]. Rigorous phase transitions are traditionally thought to take place 

in the limit N ~ =o, in apparent contradiction to (17). For instance, in a gas of free atoms one 

usually lets N --, =o keeping the density n = N/V constant, and obtains a condition for the 

density rather than particle number. 
Using the limit of the harmonic oscillator wave functions for large quantum numbers 

( ~Vn(0 ) ,.= (nln2n3) -lt2 , [25]), the density of the gas at the trap center at the Bose condensation 

threshold is easily found to scale with the dimensional quantities as 

3 

fMkT12 
nc = ~_,N.(~=0)I~V.(0)I 2 = \  1~2 ) , 

n 

(18) 

precisely like the critical density of the free gas. Obviously one can express the condition for 

Bose condensation in terms of the intensive quantities n and T and simultaneously let N --~ o= 

only if the thermodynamic limit is defined by demanding that N -~ oo, v ~ 0 in such a way that 
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Nv 3 remains constant. The thermodynamic limit involves tampering with the trap parameters 
themselves. Another unpleasant price to be paid is that the spatial dimension of the ground- 

state wave function scales with the frequency v as v -1/2, and hence the density of the Bose 
condensate ,~ Nv 3f2 = N~-v -3r2 diverges. 

The temperature that can be reached using laser cooling is of the order of T ~ ~y/k, and 
the order of magnitude of the oscillation frequency in the recent all-optical trap for sodium [3] 

was v ~2~x100 kHz, thus the critical atomic number becomes N c ~ 106. For the reported 

number of atoms, 500, Bose condensation is not expected. A severe problem with sodium, and 
probably all other elements except hydrogen as well, is that it will not remain a gas in thermal 

equilibrium at IlK temperatures. On the other hand, spin-polarized atomic hydrogen is 
metastable against formation of H 2 molecules, but the transition wavelengths do not permit 
laser cooling or trapping at today's state of the technology. It may take quite a while before 
Bose condensation in atom traps will be observed. 

Nevertheless, we disregard the experimental odds and proceed to pursue our theme. In 
elementary statistical mechanics the macroscopic population of the ground state, 

<b~ bo> = N O , (I 9) 

is adopted as the signature of Bose condensation. However, like in laser theories which predict 

the Poissonian photon statistics [26] but not the coherent field commonly employed to model 
the output of an ideal laser, we suggest that (19) is not the whole story. We assume that the 
annihilation and creation operators of the atoms in the ground state of the trap themselves 
acquire nonzero expectation values, 

< bo> =e" '° vr o , <bo' >--- e '° (20) 

The random phase ~ is attributed to spontaneous symmetry breaking, a concept familiar from 

the theory of (presumably) another Bose condensate, 4He below the ~, transition [27]. 

The issue is, does the phase ~ have observable consequences, in the laser analog we 
would ask, how can we tell the field from a laser has a phase. There appears to be no simple 

answer. It is well known that the usual square-law detectors do not make any distinction 
between different fields having a Poissonian photon statistics, so photon counters are not 

sensitive to the phase. 
But two lasers can beat against each other, revealing their phase difference. Guided by 

the analog, we imagine that two traps containing Bose condensates are first far apart, and are 

then brought close enough to each other to exchange atoms. When the traps are separated, 

their ground-state wave functions ~l and ~/r are degenerate. The interaction of the traps at the 
close distance d is taken to be strong enough to lift the degeneracy, but too weak to mix 
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oscillator states that were not degenerate initially. The relevant Hamiltonian for the ground 
state thus reads 

Here bl, br are boson operators that annihilate atoms with the wave functions ~j, ~'r, and E is a 

parameter characterizing the interaction strength. A qualitative estimate for K is obtained by 

multiplying the overlap of the wave functions ~ and ~r by the oscillator frequency v, giving 

] (22) 

The frequency K decreases very rapidly with increasing distance between the traps; e.g., for 

sodium and with v = 2~×100 kHz, the time scale l IE is one hour for d = 3 l~m. 
The Heisenberg equations of motion of the boson operators under the Hamiitonian (21) 

can be solved trivially. We adopt for each trap separately an initial condition of the form (20), 
and obtain for the number of atoms in the left trap the expression 

< bl(t) b,(t) > N t o 0 ~ i  2 : + N r sin ~ + ~ sin(~ I -¢r) s in2~. (23) 

The result shows that if the initial number of atoms is different (N~ ~Nr), the atoms start 

oscillating between the traps, as one might expect. Much more surprising is that the atoms 
start oscillating even though their number is the same. The phenomenon is governed by the 
phases ¢; the amplitude of the oscillations of the number of atoms measure the phase 

difference ¢1-~- We are describing a macroscopic quantum phenomenon associated with 
spontaneous symmetry breaking, very much analogous to the (DC) Josephson effect [28]. 

Experimental demonstration of Bose condensation may be very difficult, and construction 
of the double trap is probably even more demanding. Also, the trap scheme operates on 
neutral particles which do not directly couple to electromagnetic fields. Analogs of the practical 
applications of the Josephson effect are thus not obvious. The trapped atoms couple to gravity 

and acceleration, and the oscillation frequency ~ is extremely sensitive to the separation of the 

traps; but we do not envisage new-generation laser gyros or meter sticks. 
Instead, we forward both a single trap and the double trap as minilabs for theoretical, and 

later maybe experimental, studies of the very fundamentals of statistical mechanics. The 
interactions of spin-polarized hydrogen atoms are weak. However, in a trap the density of the 
Bose condensate tends to infinity at least in the thermodynamic limit we have described, so 
even weak interactions may profoundly affect the Bose condensate. In fact, the thermodynamic 

limit itself is a most interesting problem. The number of particles in the trap may be varied, and 
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may be small in the many-particle standards. What happens to Bose condensation and to 
spontaneous symmetry breaking under such conditions is at present to a large extent 
unknown. 

References 

1. W. Neuhauser, M. Hohenstatt, P. E. Toschek, and H. G. Dehmelt, Phys. Rev. A 22, 1137 
(1980). 

2 A. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf, Phys. Rev. 
Lett. 54, 2596 (1985). 

3. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986). 
4. W. Nagoumey, J. Sandberg, and H. Dehmelt, Phys. Rev. Lett. 56, 2727 (1986). 
5. Th. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, Phys. Rev. Lett. 57, 1696 (1986). 
6. J.C. Bergquist, R. G. Hulet, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 57, 1699 

(1986). 
7. J.J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 54, 1000 

(1985). 
8 J.P. Hansen, Phys. Rev. A 8, 3096 (1973). 
9 W.L. Slattery, G. D. Doolen, and H. E. DeWitt, Phys Rev. A 21, 2087 (1980). 
10 J.J. Bollinger and D. J. Wineland, Phys. Rev. Lett. 53, 348 (1984). 
11. J. Mostowski and M. Gajda, Acta Phys. Pol. A 67,783 (1985). 
12. J.P. Schiffer and O. Poulsen, Europhysics Lett. 1,55 (1986). 
13. J. Javanainen, Phys. Rev. Lett. 56, 1798 (1986). 
14. T.J. Greytak and D. Kleppner, in New trends in Atomic Physics, edited by G. Grynberg 

and R. Stora (North-Holland, Amsterdam, 1984). 
15. R.V.E. Lovelace, C. Mehanian, T. J. Tommila, and D. M. Lee, Nature 318, 30 (1985). 
16. T.J. Tommila and R. V. E. Lovelace (to be published). 
17. V. Bagnato and D. E. Pritchard (to be published). 
18 J. Javanainen, Phys. Rev. Lett. 57, 3164 (1986). 
19. H.G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967). 
20. An authoritative review of theories of cooling of a single particle, trapped or free, is given 

by S. Stenholm, Rev. Mod. Phys. 58,699 (1986). 
21. The perturbative method is a derivative of that in D. J. Wineland and W. M. ltano, Phys. 

Rev. A 20, 1521 (1979). 
22. J. Javanainen (to be published). 
23. S. R. de Groot, G. J. Hooyman, and C. A. ten Setdam, Proc. Royal Soc. London, Ser. A 

203, 266 (1950). 
24. R. Masut and W. J. Mullin, Am. J. Phys. 47, 493 (1979). 
25. J.T.M. Walraven and I. F. Silvera, Phys. Rev. Lett 44, 168 (1980). 
26. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, 

Reading, MA, 1974). 
27. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, 

Frontiers is Physics Vol. 47 (Benjamin, Reading, MA, 1975). 
28. B.D. Josephson, Phys. Lett. 1,251 (1962). 



EXPECTATION VALUES, Q-FUNCTIONS AND EIGENVALUES FOR DISPERSIVE OPTICAL BISTATBILITY 

H. Risken, K. Vogel 

Abteilung fur Theoretlsche Physlk, Unlversltat Ulm 

D-7900 Ulm, Federal Republic of Germany 

I Introduction 

Optical blstability has become an important field in quantum optics, see for 

instance [I-4] for reviews. A fully quantum mechanical treatment of optical 

blstablllty requires the solution of the master equation, i. e. the equation of 

motion for the density operator. For the model of Drummond and Walls (DW) [5] 

describing dispersive optical bistabillty we discuss two methods for solving this 

master equation. The DW model has the advantage that only the operators of the cavity 

light mode enter in the equation of motion of the density operator. Besides this 

simplicity it is a nonlinear and nontrlvlal model. 

The most important solution is the stationary solution of the master equation. 

This solution was already obtained by DW using a complex P-representatlon of the 

density operator. The complex P-functlon as well as the positive P-function have been 

introduced and further investigated by Gardiner [6]. As was shown by DW expectation 

values of the light operators can be expressed in terms of generalized Gauss 

hypergeometrlc series. 

The next important quantity of the master equation for the density operator is 

its lowest nonzero elgenvalue. Without fluctuations we have two stable states for 

appropriate driving fields and system parameters. With the inclusion of fluctuations 

transitions between these two stable states are possible. The lowest nonzero 

elgenvalue determines the transition rates between the two states. For the model of 

DW no analytic results are known for the elgenvalues. Therefore a numerical procedure 

is needed for determining the lowest nonzero elgenvalue. In this manuscript two 

methods are presented by which some of the lowest real elgenvalues are calculated. 

(An extension to the calculation of complex elgenvalues seems also to be possible). 

In the first method [7] we expand the density operator into elgenstates of the system 

Hamilton operator. Then one obtains a system of coupled differential equations for 

the matrix elements of the density operator. If we restrict ourselves to the slow 

motion of the density operator only the diagonal elements of the density matrix need 

to be taken into account in the small cavity damping limit. The lowest nonzero 

elgenvalues as well as some other low real ones follow from the equation of motion of 

the diagonal matrix elements. 
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In the second method [8] we transform the master equation into a Fokker-Planck 

equation (FPE) for the Q-function of the density operator, see (4.7). Because the 

diffusion matrix is not positive definite or semldefinite it is not an ordinary FPE 

which can be interpreted as describing the Brownlan motion of a particle in a 

suitable potential. We have termed such a FPE a quantum-Fokker-Planck equation 

(QFPE). For a non positive definite diffusion matrix we may still have a stable 

stationary solution, An illustrative example is the equation 

a a 2 a 2 
~w [ --(x I -~x 2) ÷ !(x~+~x, ) + -- q ] w , 
a-[ = a x  1 SX 2 ~ , aX 2- qax 2 

(1.1) 

which has a stable stationary solution if the conditions q <I and (1+q)21(1-q) 2<I+~ 2 

are fulfilled. By applying the matrix continued fraction (MCF) method for solving two 

variable FPEs [9] we obtain the stationary solutions as well as the lowest nonzero 

real eigenvalues and some other low real eigenvalues of the QFPE for the Q-function. 

The elgenfunctlon corresponding to the lowest nonzero elgenvalue is also calculated. 

The method is not only applicable for pure quantum fluctuations where the number of 

thermal quanta nth is zero. It is also applicable t'o the case nth > 0 where the 

detailed balance condition for the complex P-function is no longer valid and 

therefore a stationary solution is hard to obtain. 

The present paper is organized as follows. In Chap. 2 we present the DW model as 

well as the classical equation of motion without fluctuations. Next in Chap. 3 we 

shortly review the procedure for the small cavity damping limit. In Chap. 4 we 

present the QFPE for the Q-functlon and outline in Chap. 5 the MCF method for solving 

it. Finanlly in Chap. 6 stationary Q-functlons, some real elgenvalues, the 

elgenfunctlon for the lowest nonzero elgenvalue as well as some expectation values 

are given. It is further shown that expectation values as well as the eigenvalueS can 

also be obtained by applying the MCF-method to the Glauber-Sudarshan P-functlon. 

2 Model and Basic Equations 

By expanding the polarization up to third orderp by including a coherent 

classical driving field, by adding losses due to cavity damping and by making the 

rotatlng-wave approximation DW obtained a master equation for the density operator of 

the light field inside the cavity. In a slightly different notation this master 

equation takes the form 

= -i[H,p] + ~Lir[P] , (2.1) 
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where H and Lir are given by 

H = -£ata + xat2a 2 - F(a+a t) (2.2) 

Lit[P] = 2ap at - PaTa - atap + 2nth[[a,p],af] • (2.3) 

Here £ = ml-~ c is the difference between the frequency of the classical driving field 

F and the cavity frequency, X Is the imaginary part of the third order 

susceptibility, K is the cavity damping constant, nth is the number of thermal quanta 

and a t and a are the creation and annihilation operators for the light field inside 

the cavity. 

From (2.1) we obtain for the complex amplitude 

= Tr(ap) , ~ = Tr(~TP) (2.4) 

= l£m-~-21xTr(aTa2p) + iF . (2.5) 

By replacing Tr(ata2p) in terms of the expectation value (2.4), i. e. by e*e 2 we 

arrive at the classical equation whlthout fluctuations 

& = [ t £ - ~ - 2 i X ~ * m ] e + l F  . (2.6) 

By using the normalized time t, amplitude ~, intensity I - ~*~, damping constant ~ and 

driving field F defined by (£>0) 

= ~t ,  : = / x - ~ ,  : = (x /~)  l ,  

(2.6) is transformed to the normalized form 

d~/dt = [ i (1  -2~*~) - ~ ] ~ + i F .  

- 1 

(2.8) 

It follows from (2.8) that the following connection between IFI and I is valid for 

the stationary state (de/dr =0, see also [5]) 

I#1 " / z [ a 2  ÷ (1_2~ )2 ] '  (2.9) 

According to DW the stationary solution is unstable between the turning points, see 

Fig. I. Bistabilty occurs if we have turnig points, i. e. for 

< l /v~,  I#1 < / 1  +9~2+ (1-3~2)3/2 ' / (3~)  . (2.10) 
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3 Small Cavity Damping Limit 

For vanishing ~ the system wlll remain in an elgenstate of H if it was initially 

in such a state. Therefore the elgenstates of H denoted by Im), i. e. 

Him) = Emlm) (3.1) 

will play an important role. By expanding Im) into Fook-states In> these elgenstates 

can be calculated [7]. As was further shown in this reference the slow motion of the 

density operator p is given by the diagonal elements of the density operator 

Pm = (ml~Im) (3.2) 

in the small cavity damping limit for K<< [E m-Enl. From (2.1) one can derive the 

following Paull master equation for Pm [7] 

Pm= 2K[[w(£÷m)p£-~w(m~g)pm ] = 2K [Wm£P£ , (3.3) 
£ £ £ 

where the transition probabilities w(£~m) are given by 
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Fig. 2: Plot of the real eigenvalues of the matrix Wm£ in a logarithmic scale as a 

function of the normalized driving field F for X/~ =0.11 and nth=0 (taken from [7]) 

w(£~m) = I(mlal£)12(1+nth ) + l(mlaTl£)12nth . (3.4) 

These transition rates are easily calculated by using the expansion of the 

eigenstates Im) in Fock states [7]. The real elgenvalues, which scale with 2<, are 

the eigenvalues of the matrix 

Wm£ = w(£+m) -[w(m~n)6m£ (3.5) 
n 

occurlng in (3.3). In Fig. 2 some of these lowest real eigenvalues are plotted as a 

function of the driving field. As was shown in [73 stationary expectation values as 

well as the Q-functlon can also be obtained from (3.3) in the small cavity damping 

limit. 

4 Quantum-Fokker-Planck Equation 

Any normally or antinormally expectation value of the light field operators a and 

a t may be obtained from the eharaeterlstic functions 

• • * t 
P(B) = P+CB) = Tr{elS~ateiSap} , Q(8) = P-(8) = Tr{elSae 18 a p} (4.1) 
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by appropriate differentiation with respect to 8 and 8*. The Fourler-transforms of 

these characteristic functions 

P+(e) = 1T -2 ; e  - lczB- tm*8*P±(B)d28 (4.2) 

the Q-function, see for instance [I0]. are the Glauber-Sudarshan P-functlon and 

Because the equations of motion for the P- and the Q-function derived later on differ 

only by ± signs, we have used in (4.1,4.2) and will use later on the notation 

P ( a )  " P + ( m )  ; Q ( o )  = P - ( ~ )  • (a.3) 

The Q-functlon can be expressed by the density operator according to 

QCe) = P- (e)  = <~lOl~>/~ , Is> - coherent state (4.4) 

whereas the density operator p itself can be expressed by the Glauber-Sudarshan 

P-functlon [11,12] by the relation 

(4.5) 

Normally and antlnormally ordered expectation values are obtained from the P- and Q- 

function by integration 

<atnam> = f o~*namp(~,)d'm ; <amain> . [:*n~mQ(e)d2~ . (4.6) 

Because of squeezing [13] the P-functlon does not exist in general. As will be seen 

later on the expansion coefficients of the P-functlon into a complete set, however, 

do exist. (Also its Fourier transform P(8) does exist.) In order to derive an- 

equation for these expansion coefficients we may nevertheless use the equation of 

motion for the P-functlon. 

From the master equation (2.1) the following equation for the P=P+- and 

Q=P --function was derived [5] 

8P± ~ (_~a + i £ e +  2 i ( l ~ l ) x e  _ 2iXa2a* + iF )  p+ 
8t ~a 

* 
~a,(-~ - ifl~* -2i(I~1)X~* + 21X~ .2~- IF) P± 

~= I I ~2p± ~2 
~iX--~=P ± + 2~(nth+~) 8 ,~-- + iX~8~ .2 ~*2p± . (4.7) 

The upper signs are valid for the P-functlon, the lower ones for the Q-functlon. In 
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real notation with 

= ~I +iu2 

(4.7) takes the form (sumat!on convention for the I and 2 index) 

~P± B ~2 
~t ~ID~P± + ~I~-----~jD~jP± ' 

where the drift and diffusion coefficients are given by 

D~ = -K~ I -£~2 -2 (1~ l ) x~2+2X~2 (~+~  ) '  

D~ =-Ke2+I]e 1 +2(1;1)X~ 1 - 

I 
D~ 1 = ±X~le2 + ~ ( n t h + l ~ ) ,  

2x~i(~ ~ ÷ ~)÷~ , 

D~ 2 = X 2 2 I I 
D~2 " ~X(~I(~2 + 2 (nth+ 5 ; 5 )" 

(4.8) 

(4.9) 

01 , < 0 for o'o- 4 >   C°th+ 

Because the diffusion matrix is not positive deflnte or 

everywhere, (4.9) cannot be interpreted as describing the Brownlan motion of a 

particle in a suitable potential and therefore no simple simulation of (4.9) is 

possible. For this reason (4.9) was termed quantum-Fokker-Planck equation (QFPE). By 

doubling the phase space [6] it may be possible to derive a FPE with a positive 

definite diffusion matrix and a simulation is then possible [14]. (By .adddlng 

Langevln noise forces to (2.6) Graham and Schenzle [15] and Haug et al. [16] obtained 

a FPE for dispersive optical blstabillty wlth a positive definite diffusion matrix. 

It is similar to (4.7) for nth >> I.) To apply the matrix continued fraction method 

(MCF method) it is more appropriate to use the intensity I and the phase ¢ defined by 

as variables. Eqs. (4.7,9) are then transformed to 

8P± = {- (-2<I*<(2nth*1;1) *2F/Isln¢) - (£-2X(I-I) ~X+--cos¢) 
~t /f 

~2 ~2 ~ I I 
+ K:(2nth + _  I ~ I ) ~I • 2X ~-r=-c_~@al I + ~ (nth+ ~ ; z -) P± . (4.13) 

(4.11) 

positive semldeflnlte 

It is easily derived from (4.10) that the diffusion matrix is not positive definite 

if the intensity is large enough, i. e. 

(4.1o) 
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5 Solution in Terms of Matrix Continued Fractions 

For the P:P+- and Q=P-ifunctlon we use the real expansion 

P±(I,@) = 
m=O 

{a~exp( - I I !  s) L~( I / I  s) 

+ Z 2 (  an cosn¢ -b nslnn¢) exp(-III s) (I/ls)nl2Ln(I/I s) } (5.1) 
n=1 ~ m m 

where L~(I/I s) are the generalized Laguerre polynomials. (An expansion of this type 

was already used in [16,17].) The scaling intensity I is arbitrary but will be 
s 

chosen such to achieve good numerical convergence of the expansion (5.1). The factor 

I/~T was added to reduce the numerical errors for the inversion of the matrices. In 

the next step we insert (5.1) into (4.13) and obtain the following recurrence 

relations for the expansion coefficients 

~0 (2F/ /~s)mbl  2K 1 1 
m = m-1 - I - (n th+2  $ 5 -  Is) 

S 

0 
ma0m_ I -2<ma m 

. bn+1 bn_ I 2<. I I an _ 2<(m+n/2)a n a~ = ( F / ~ ) m  m-1 + F W / ~ s  m - T - t n t h + 2 $ 2 - I s  )m m-1 m 
8 

-n{-£ +X(2Is+l)(2m+n) + X(2Is-2±1) } bnm + 2nmX(Is±l) bnm-1 +n(m+n+1)2X~- b n 
- m+1 

s 

an+1 _F n~/~s an_ 1 2K I I ~nm - ( F / ~ l m  m-I m - I - (n th+2  ~ 2 - I s )  mb~-1 -2K(m+n/2)bnm 
S 

÷n{-£+X(21s+1)(2m+n) +X(2Is-2±1)} a n - 2nm×(Is±l) a n -~-~-Xn(m+n+1) a n 
- m m-1 m+1 " 

s 
(5.2) 

The normally or antlnormally ordered moments (4.6) can be expressed by the 

coefficients of the expansion (5,1) for the P- and Q function and vice versa. We have 

for instance for the P-function 

S <ata> = ~I2 s (a~-aT) (5.3) 

and for the Q-function 

<a> = ~I3/2(al-ib 1) 
S 

<aTa> = <aa%>-l= ~ I2 (aO-aT / - l s  (5.4) 

It should be noted that the normalization 
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(5.5) 

requries a O0 = I/(is~ ) in both cases. If squeezing occurs the expansion (5.1) for the 

P-functlon does not exist, though the expansion coefficients of the P-function do 

exist. The equation of motion for the expansion coefficients of the P-function (5.2) 

determine these coefficients. In principle, the P-functlon and the corresponding QFPE 

can be avoided by only using the the master equation (2.1) and the connection between 

moments and expansion coefficients for the derivation of (5.2). 

In (5.2) only coefficients with adjacent indices are coupled. By introducing 

column vectors of the form 

e m (amO, a I b I a 2, b 2 ) 
m' m' m' " " " 

( 5 . 6 )  

we can cast the recurrence relations (5.2) into the tridlagonal vector recurrence 

re fat ion 

-- + + 

Cm = Qmem-1 + Qmem QmCm+1 ' (5.7) 

± and Qm are matrices following from (5.2). By investigating the Brownlan where Qm 

motion problem in tilted periodic potentials Vollmer and one of us had derived 

trldlagonal vector recurrence relations of the form (5.7) [18]. In these references 

the stationary solutlon, elgenvalues, elgenfunetions as well as some other 

instationary solutions of an equation of the form (5.7) have been obtained by 

calculating appropriate matrix continued fractions (MCF), see also [9] Chaps. 9 and 

11 for a review. The same MCF method can be applied to (5.7). In order to calculate 

the matrix continued fractions, the expansion (5.1) has to be truncated at a large 

but finite index n = L, so that the matrices Q, Q± in (5.7) have the dimension 

(2L+I)*(2L+1). Furthermore, the infinite continued fractions have to be replaced by 

their Mth approximants. This means that the expansion (5.1) is also truncated at the 

index m ~ M. The truncation indices L and M have to be chosen such that the final 

results do not change within a given accuracy if L and M is increased. The explicit 

± and the details of the numerical procedure will be structure of the matrices Qm' Qm 

presented in a future publication. 

6 Results 

First we discuss some stationary expectation values. The average amplitude l<a>l 

and the classcial amplitude WT~ lal as a function of the driving field are plotted in 

Fig, 3, The average value <a> calculated with the P-functlon (5.3) agrees with the 
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, , , I , , ........ , .  I , 

1 • ' • .  I<a> -.-...-.T...-.-. . . . .  . .  

- -  I ' ' ' ' i ' 

0 0.2 F 04 

Fig. 3: The absolute amount of the average amplitude (sol ld l ines) and of the 
classical amplitude, i .  e. I~,I of Fig. I (broken l ines: stable, dotted l ines: 
unstable) as a funetlon of F for X/R=0.1, n th -0 ,  ~EO.001 ( I ) ,  ~ -0 .  I (2) and 

~-0 .4  (3) (a l l  quantities are normalized according to (2.7)) 

same value (5.4) calculated wlth the Q-functlon and with the analytic expression 

derived by DW. 

In order to declde whether squeezlng occurs we introduce the quadrature phases 

= I i 
x 1 = ~ ( a + a ¢ ) ,  x 2 ~ - ( a -  a t ) , [x  1 , x 2 ] -  

and c a l c u l a t e  t h e i r  v a r i a n c e s  

I 
Olk " ~<xlx k+xkxi> - <xi><Xk> • 

The matrix elements of o can be expressed in terms of <a> m<aT> W , 

(6.1) 

(6.2) 

<a2> = <a¢2> W and 

<ata> = <aat>-1, see (5.3). Instead of (6.1) we can also choose new operators Yl and 

Y2 connected to x I and x 2 via a 'rotation' 

Yl X I COS ¢ + x 2 sin ¢, Y2 " -Xl sin ¢ + x 2 cos ¢ (6.3) 

In such a way that e is diagonal. This cholse is equivalent to the dlagonallzatlon of 

the 2*2 matrix o. Let us call the lower elgenvalue of 0 Ay~ and the higher one Aye. 
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Flg. 4: Variances AYl, Ay 2 and the rotation angle ¢ as a function of the driving 

field F for X/I-0.1, ~=0.I and nth=0 
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Im(c{) 
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t~i , .  \ \ " ~  ,, !;!,: 
" -  . . . .  ' < i . ~  / . ~ s /  

,, ,,,,,,, ,, ! ! I ! ' !  ! ! 

0 Re(a) 5 
Fig~ 5: Stationary Q-function for F=0.2, X/Q=0.1, ~=0. I and nth=0. The contour 

lines are Q=0.02, 0.04 ..... 0.12 (solid lines); Q-0.O05, 0.010, 0.015 (broken 
lines); Q-0.01665 (line through saddle point, dotted line) 
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If for a state we have Ay~ <I/4 this state is called a squeezed state. In this case 

AY~ must be greater than I/4 because the uncertainty relation AF TAy~21/16 must be 

valid for any state. The rotation angle ¢ as well as the variances AYl and Ay 2 as a 

function of the driving field F are shown in Fig. 4. As seen we get squeezed states 

for F ~ 0.3. The elgenvalues of the variance matrix have a maximum approximately for 

those F where the Q-function has two peaks of equal heights, compare Fig. 5 

Fig. 5 shows the stationary distribution Q(~) for a field strength F where two 

peaks are clearly visible. The results are similar to those obtained by the method 

discussed in [7] for the small cavity damping limit. In contrast to that case an 

asymmetry with respect to the real axis occurs for finite damping. Because of the 

squeezing the P-functlon does not exist. If one tries to sum up the expansion (5.1) 

for the P-functlon, the result oscillates and depends on the scaling intensity I s as 

well as on the truncation indices L and M. 

In Fig. 6 we have plotted some of the lowest nonzero eigenvalues calculated from 

(5.2) with the MCF method. For the value </~=0.001 and X/2 =0.11 we got within the 

accuracy of the plot the same result as in Fig. 2 which was calculated by 

dlagonaliztng the matrix (3.5). Even the small ripples on the left part of Fig. 2 

have been reproduced. We also get the same elgenvalues for both P-and Q-functlon. The 

lowest nonzero efgenvalue is connected with the escape rate [7]. Thus also the decay 

i 0  0 , 

2K 

1 0 - 2  

I i I i I I,,, 

, , , f , , , ! 

0 02 _ 0.4 
e 

Fig, 6: Plot of the lowest real nonzero elgenvalues divided by 2K in a logarithmic 

scale as a function of F for X/£ =0.I, ~=0. I and nth=0 
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2 

Im(a) 

0 

- 2  

- 4  

i I [ I, I I I 

t '~ k , , . j "  I I 

r "  

0 Re(a) 5 

Fi~. 7: Unnormaltzed elgenfunction for the Q-function belonging to the lowest nonzero 
eigenvalue for the parameters of Fig. 5. The contour lines are equidistantly spaced. 
The Q ~ const > 0 lines are the solid ones, the Q = const < 0 lines are the broken ones 
and the nodal curve Q = O is shown by a dotted line 

rate agrees for both functions. This is of co~se an essential feature of a fully 

quantum mechanical theory. As remarked by Drummond [19] in previous calculations on 

absorptive optical bistability approximations Were made which are not consistent with 

fully quantum mechanical calculations. These calculations lead to tunneling rates 

which - depending on the representation used - differ by orders of magnitude. 

In Fig. 7 the eigenfunctlon for the Q-functlon belonging to the lowest nonzero 

eigenvalue is shown the for parameters of Fig. 5. Near the maximum and minimum the 

contour lines agree quite accurately with the contour lines near the two maxlma in 

Fig. 5. The nodal line in Fig, 7 separates the two maxima in Fig. 5. 

Oscillating Variation of Transition Field 

The lowest nonzero elgenvalue has a minimum at a field approximately in the 

middle of the bistable region. The transition of the average stationary amplitude 

from the lower branch to the upper branch also occurs approximately at the same 

fleld. In the stationary state this transition field Ftr may be defined by the 

condition that the real part of the average amplitude <a> vanishes at Ftr. For small 

damping constants a strong oscillating variation of this field with respect to the 
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Ftr 

0.4 

0.2 

0 

! 

0 5 10 O / X  5 

Fig. 8: The field Ftr at which the real part of <a> vanishes as a function of ~/X for 

nth=0, ~=0.001 (I) and ~ =0.1 (2) 

the parameter 2/X was observed, see Fig. 8. (This plot was obtained from Eq. (5.17) 

of [5]). Near integer values of R/X, Ftr reaches very low values for very small ~. By 

moving away from these integer values, Ftr increases very sharply to values which are 

not very much affected by changing ~. It seems that this effect is a typical quantum 

effect stemming from the discrete energy levels E m of the Hamilton operator (2.2). By 

increasing O/X a new elgenstate between the state which evolves from the vacuum state 

for F= 0 and the minimal energy state occurs at integer values of ~/X, see also Fig. 

2 and Eq. (4.8) of [7]. It was found by the MCF method that the lowest nonzero 

elgenvalue at the transition field Ftr has a larger value at and very near integer 

values of ~/X for small cavity damping. (The method for calculating the elgenvalues 

described in Sect. 3 and in [7] does not work for integer or near integer £/X values. 

Here also nondlagonal matrix elements of p must be taken into account). 

7 Conclusion 

In conclusion we have solved the QFPE for the Q- as well as for the P-functlon 

with a non positive definite diffusion matrix describing optical blstabillty with the 

matrix continued fraction method. Expectation values, the squeezlng parameter and the 

eigenvalues for both functions ~gree very accurately, The lowest nonzero real 
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eigenvalue has a minimum approximately in the middle of the bistable region. An 

appreciable oscillating variation of the location of this minimum with the ratio of 

the detunlng to the parameter of the nonlinear susceptibility was found for small 

cavity damping. Furthermore, the stationary Q-function as well as its eigenfunctlon 

belonging to the lowest nonzero eigenvalue have been obtained. The calculation of 

tlmedependent correlation functions by the MCF method seems also to be possible. 
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BERRY'S PHASE AND THE PARALLEL TRANSPORT OF POLARIZATION 

Zofia Bialynicka-Birula 
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Lotnikow 32/46, 02~668 Warsaw, Poland 

1.INTRODUCTION 

Last year, a simple optical experiment confirmed the existence of 

the geometrical phase of the wave function predicted by Berry I in 1984. 

This, so called Berry's phase, is a general property of quantum systems 

evolving in time in adiabatically changing environments. 

Originally, Berry considered Hamiltonian systems for which the 

state vectors evolve according to the Schr~dinger equation, 

i ~ a t ]~>  = H I~> , ( i )  

and the Hamiltonian H(~(t)) depends on a set of external parameters ~(t) 

changing slowly (adiabatically) in time. At any given time the Hamilto- 

nian has a complete set of eigenvectors, denoted by In(~(t))>, 

H ( R ( t ) )  t n ( ~ ( t ) ) >  = E n ( i ~ . ( t ) ) } n ( i ~ ( t ) ) >  . (2) 

In the adiabatic approximation we assume that the system prepared at 

time t=0 in one of the discrete eigenstate, In(~(0))>, of N(~(0)) will 

cling to " the same" eigenstate In(~(t))> during its evolution, povided 

In(R)> is a regular and single-valued function of ~ at least in the 

part of parameter space travelled by the system. It is well known that 

during such an evolution the wave function will acquire the so called 
it dynamical phase factor, exp[- ~y@ dT En(~(T))], which depends on the 

time of evolution. Berry discovered an additional phase factor which 

depends on the path travelled by the system in the space of external 

parameters but not on the time of the travel. 

If the state vector l*(t)> at time t>0 is to be directed along 

In(~(t))> (according to adiabatic approximation) then, in order to sa- 

tisfy the SchrSdinger equation, l~(t)> would have to contain a phase 

factor exp(iYn(t) ) (in addition to the dynamica+l phase factor) to com- 

pensate partly for the change of the vector In(R(t))> resulting from 
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the change of parameters ~(t). The phase factor exp(iYn(t)) compensates 

only that change of ]n(~(t))> which is directed along [n(~(t))> , 

~ n ( t )  = i < n ( ~ ( t ) )  I VRn(~( t ) )>  .~ ,  (3) 

I f  the  p a r a m e t e r s  ~ t r a v e r s e  a c l o s e d  pa th  C, then  the  phase  Yn 
i s  g iven  by the  l i n e  i n t e g r a l  a long  C, 

Yn(C) = i ~<n(~) l  VRn(~)> -d~,  (4) 
C 

and is independent on how this path is traversed in time. Using Stokes 

theorem one can transform the line integral into the surface integral 

over the surface S bounded by the contour C, 

7n(C ) = -Im de.V R x <n(~)]  VRn(~)> . (5) 
S 

The r . h . s ,  can a l s o  be e x p r e s s e d  by the m a t r i x  e l emen t s  of  the  g r a d i a n t  
o f  the  Hami l t on i an  in the  p a r a m e t e r  s p a c e ,  

~n(C) = -Im[d~.Z <n(~)]VRH(~)[m(~)>x<m(~)[VRH(~)]n(~)> 

m/n [Em(~) -En(~) ]  2 
(6) 

This equation shows a somewhat suprising feature of Berry's phase, na- 

mely, that it depends on those values of external parameters (inside 

the contour C) that were not experienced by the system. The dependence 

on the external parameters is nonlocal, like the nonlocal dependence on 

the magnetic field in the ordinary space in the Bohm-Aharonov effect. 

The denominator in Eq.(6) signals also the importance of the degenera- 

cies that may occur for some values of ~ inside the contour C. 

The discovery made by Berry is quite general. One can look for 

his geometrical phase in many areas of ph:~ics from gauge-field theo- 

ries) through the nuclear physics to the molecular physics. Berry, him- 

self, explored several situations in which the geometrical phase could 

be measured. One of the simplest is the motion of a neutral particle 

with a magnetic moment, e.g. a neutron, in a magnetic field ~(t) that 

slowly changes its direction tracing a closed circuit C. Using Eq.(6) 

Berry showed that the particle wave function would ~luire a phase, 

Yn(C) = -n f d$ '~ /B3  = -n ~(C) ,  
S 

(7) 
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where n is an eigenvalue of the projection of particle's spin on the 

direction of the magnetic field, ~.~ - the adiabatic invariant; ~(C) 

denotes the solid angle subtended by C at 3=0. (~=0 is the point of 

degeneracy.) The phase Yn(C) could be detected in the interference ex- 

periment involving two beams of particles: one, which experienced the 

changing magnetic field and another, which avoided it. 

Later, Berry 2 has extended the adiabatic method from SchrBdinger 

theory to Maxwell theory. In this case the role of the changing exter- 

nal parameters is played by the components of the dielectric tensor of 

a birefringent and gyrotropic medium in which the light beam propagates. 

Berry's phase resulted in the changes of the polarization of light 

which, again, could be measured in the interference experiment. 

Strictly speaking, in the case of the light beam we have rather 

to do with the classical analog of Berry's phase. This classical analog 

was studied by Berry 3 and by Hannay 4 who found in 1985 an additional 

change of the angle variable resulting from an adiabatic evolution of 

the classical system governed by an integrable Hamiltonian. Recently, 

Gozzi and Thacker 5 showed a close connection ( a correspondence) bet- 

ween Berry's quantum phase and Hannay's classical angle. 

So far, the only experiment in which Berry's phase was measured 

and its topological properties were verified has been performed on 

light beams and not on systems described by the Schr~dinger equation. 

2. OPTICAL MEASUREMENT OF BERRY'S PHASE 

The idea of the experiment came from Chiao and Wu 6 who predicted 

that the linearly polarized light beam travelling through a one-mode, 

helically wound optical fiber will have its polarization rotated. The 

angle of rotation is a direct measure of Berry's phase for the photons. 

Here, like in the case of neutrons in a magnetic field, we again deal 

with the transport of spin along the particle's trajectory. Helicity 

(the projection of spin on the wave vector) is an adiabatic invariant. 

Since the photon is a massless particle, its spin is always directed 

along its momentum (the wave vector). The helicity quantum number is 

either +l or -i. If the fiber is not too sharply kinked, the helicity 

remains unchanged during the passage of photons through the fiber. For 

the light propagating along the optical fiber the role of external 

fields or forces (the magnetic field ~ for neutrons) is played by the 

changing characteristics of the medium along the trajectory, which 

change the photon momentum. Thus, the wave vector itself plays the role 

of the adiabatically changing parameter in Berry's theorem. Chiao and 
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Wu used the analogy between the projection of spin on the magnetic 

field, ~.~, for neutrons and the photon's helicity, ~,~, to predict 

the change of the phase of the photon wave function. When the optical 

fiber makes one loop, the photon wave vector traces a circular closed 

path C in the reciprocal space. The photon wave function for helicity 

acquires a phase 

~(c )  = -x ~ ( c ) ,  (8) 

where ~(C) is the solid angle subtended by the circuit C at ~=0. (~=0 

is, again, the point of degeneracy.) The changes of the phase will be 

opposite for opposite helicities; for light that was initially linearly 

polarized this means a rotation of the plane of polarization. 

The experiment proposed by Chiao and Wu was succesfully carried 

out by Tomita and Chiao 7 at the AT and T Bell Laboratories. They used 

a 180 cm long, one-mode optical fiber. They inserted it in a Teflon 

sleeve and they wound it as a helix. At one end the beam of light from 

a He-Ne laser was injected through a linear polarizer. At the other end 

the second polarizer detected the rotation of polarization. The experi- 

ment was repeated.many times for different shapes of regular and irregu- 

lar helices. It was found that the plane of polarization rotated by the 

angles that varied from fractions of the radian up to 6 radians. The de- 

pendence of this angle of rotation on the solid angle ~(C) was found to 

be strictly linear, as predicted by Eq.(8). Thus, not only Berry's phase 

for photons was measured, but its topological nature was verified. 

3. THEORY OF RELATIVISTIC SPINNING PARTICLES 

In the experiment performed by Tomita and Chiao, Berry's phase 

for photons manifested itself in the rotation of polarization resulting 

from its parallel transport around a closed circular path in the momen- 

tum space. One can understand this phenomenon (as well as the experi- 

ment on neutrons in the changing magnetic field~ proposed by Berry) on 

general grounds recalling the action of the Poincar~ group in the theo- 

ry of relativistic spinning particles. This approach is similar in spi- 

rit to that of Chiao and Wu. Instead of introducing in the Hamiltonian 

adiabatically changing external parameters which control the motion of 

a particle one ~an study the changes of the particle's momentum which 

reflect the changes of the environment. The motion of a particle through 

external fields in the adiabatic limit can be visualized as a series of 

Poincar6 transformations. Therefore, I will now study the properties of 
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such motions to uncover the universal geometrical reason for the ap- 

pearance of Berry's phase for spinning particles. This Section of my 

lecture is based on our recent publication. 8 

I will consider a relativistic particle of mass m and spin s. 

The components of its wave function satisfy a set of differential equa- 

tions (e.g. the Dirac equation, the Proca equation, the Maxwell equa- 

tions). Every solution ~a(X) of such relativistic wave equations can 

be expanded into plane waves, 

i . 
d ÷, ÷ - i p - x  + + " (9) ~a(X) = Z F[Ua(P ~ ) f t ( p , ~ ) e  V a ( P , ~ ) f 2 ( ~ , ~ ) e l P ' X ] .  

k 

where x = ( r , t ) ,  + p . x = E p t - ~ . ~ ,  E p = ~ - ~  , dF i s  a L o r e n t z  i n v a r i a n t  mea- 

sure on the mass hyperboloid, 

d3p (10) 
dr = 2Ep(2~)3 , 

and ua(~,~)e -ip'x and Va(~,~)e ip'x are plane-wave solutions of the 

wave equations with possitive and negative frequencies, respectively, 

and X labels different helicity state.s. In the case of electrons and 

other spin ½ particles Ua(~,~) and Va(~,~) denote bispinors, for pho- 

tons - polarization vectors (or polarization tensors). The helicity 

basis is used because it enables one to treat simultaneously the mas- 

sive and the massless particles. In the limit m÷0, the spin operator 

s cannot be defined, and only the notion of helicity survives. 

The amplitudes fl(~,k ) and f2(~,X) describe the independent deg- 

rees of freedom of the wave field ~a(X); all the constraints imposed by 

the wave equations have been fully taken into account. 

For photons the role of ~a(X) is played by the electromagnetic 

tensor of the radiation field f v(x). Since in this case the solutions 

with negative frequencies are simply complex conjugate of the respec- 

tive solutions with positive frequencies, the amplitudes f2(p,X).are 

of fl(~,X); one must set f2(p,X)=f~(~,~ ) . _  That is al- not independent 

ways the case for particles which have no distinct antiparticles. For 

simplicity, I will consider now only this case, and I will omit the 

subscript i of f(p,~). Thus, any wave function in ordinary space-time 

is fully characterized by one set of'functions f(p,X) in momentum space. 

The momentum space is restricted to the mass hyperboloid for massive 

particles, or to the cone for massless particles. The helicity amplitu- 

des f(p,~) may be called the particle's wave functions in momentum 

space. 

The decomposition of the electromagnetic field tensor into plane 
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waves has the form: 

fg v(x)  = I dF [e v ( ~ ) f ( ~ , + l ) ' +  e ~ v ( ~ ) f ( ~ , - 1 ) ] e  - i k ' x  + c . c .  (11) 

The complex antisymmetric polarization tensor e(~) can be expressed 

by the complex polarization vector ~(k), 

e o i ( ~  ) = im(~) e i ( ~ )  = -~ ~ i j k e j k ( ~ ) ,  (12) 

where m ( k ) : [ ~  t. 
The complex p o l a r i z a t i o n  v e c t o r  ~(~) s a t i s f i e s  a s e t  o f  a l g e b r a i c  

relations which follow from Maxwell equations and the normalization 

conditions, 

~ .e  (R) = O, (13a) 

~×~( [ )  : - i m ( [ )  ~ ( ~ ) ,  (13b) 

~ ( - ~ )  = ~ * ( ~ ) ,  (15c) 

~ * ( ~ ) . ~ ( ~ )  : i ,  ~ ( ~ ) . ~ ( ~ )  = o, (13d)  

e * C k ) × e ( ~ )  : - i ~ / ~ ( ~ ) .  (13e) 

The 10 conserved quantities that serve as the generators of the 

Poincar~ transformations (the energy II, the momentum ~, the angular 

momentum M, and the generator of the proper Lorentz transformation ~) 

can be expressed 9 as the following bilinear combinations of the hell- 

city amplitudes f(p,~), 

I % -~ 
H = Z dF f*(p,~) Ep f(p,%), 

lJ 

I % .% N = Z dr  f * ( p , l ) [  -zp × g + A~Ip ] f ( p , i )  ÷ , 
X 

: * + ~ g ) / 2 ]  f ( 5 , ~ )  z l d r  f * ( p , X ) [  i (  g ~p P 

I , % -~ + + m z d.r f ( p , ~ ) [ ( f f  × s x ~ . ) / p Z ]  f(p ,X') , 

where 

(14a) 

(14b) 

(14c) 

(14d) 

+ is the set of three spin matrices in the helicity basis. sx~- 
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In Eqs.(14c,d) there appears the "covariant derivative" ~ in 

momentum space, which has the form: 

( is) 

where V is an ordinary gradient with respect to ~ and the real vector 

~(~) is an analog of the vector potential. The helicity amplitudes 

f(~,~) are determined up to a phase factor, since the polarization func- 

tions Ua(P,X ), Va(P,X) or e are also determined up to a phase fac- 

tor, The presence of the covariant derivative ~ in the expressions (14) 

for generators makes these expressions explicitely invariant under the 

change of phase of f(~,k). It also helps to split the angular momen- 

tum ~ into two parts: one orthogonal to the momentum ~ (orbital angular 

momentum) and one parallel to ~ (helicity). 

Our calculations of generators yielded the following expressions 

for ~(p) for spin ½ and spin 1 particles: 

= 1 ~(~) ~(pZ,-pl,O) for spin ½, (16a) 

+ P3 
~(P) = 2 2 (P2'-Pl '0) for spin i, (16b) 

P(Pl+P2 ) 

which a re  s i n g u l a r  a long  a l i n e .  For  pho tons  the  v e c t o r  ~(~)  was c a l -  

c u l a t e d  from the  e q u a t i o n :  

The curl of ~(~) has the form of the magnetic field of a mono- 

pole of a unit strength located at the origin in momentum space, 

v × ~(~) : ~/p3. (la) 

The motions of a particle in space-time,viewed as Poincar6 

transformations, result in the action of the appropriate generators 
+ 

on the helicity amplitude f(p,%). In the case of rotations it is the 

action of the angular momentum operator. For rotations around the 

z-axis, we have: 

M z f(~,X) = [ -i~ x ~ + X~/p ]z f(~,X). (19) 

The rotation around a fixed axis will be considered in the next Section 

in relation to Berry's phase. 
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4. THE PARALLEL TRANSPORT OF POLARIZATION 

Let us consider now a particle moving with a constant energy and 

a slowly varying momentum. In this case the changes of the momentum are 

due to pure rotations. To make contact with the optical experiment on 

Berry's phase I will calculate the change of the phase of the wave fun- 

ction f(~,l) for the 2~ rotation around a fixed axis, i.e. for a circu- 

lar closed path in momentum space. One can view this problem as a para- 

llel transport of a vector along a closed path - a classical problem 

of differential geometry. 

In order to directly apply the methods of differenfial geometry, 

the function f(~,l) will be represented by a real 2-component vector 
Fa ~ + 

(p,l) whose components are the real and the imaginary parts of f(p,X). 

The covariant derivative of the vector field Fa(~,l) is: 

Dira(~,~) = Iv i + r a ,+,I i blPjjFB(p'%)" 

According to Eq.(15), the affine connection Fiab(~) has the form: 

Fiab(p) = ~ ~i (~) cab' 

where e a is the antisy~anetric matrix: e 2 = 1 = -e I 1 = 0, b 1 2 ' e 1 
2 = 0. 

e 2 
R a The curvature tensor ij b derived from this connection is: 

a 

Rij b = a _ + F.a Fjc b pja c ~i Fjb 8j Fiab i c - PiCb 

(20) 

(21) 

= X ( V i ~j x Vj ~i ) gab (22) 

The non~anishing of the curvature tensor in the momentum space is 

the reason for Berry's phase to appear; the curvature causes the rota- 
a+ 

tion of the vector F (p,l) when it is transported along a closed path C 

in momentum space. The angle of rotation is given by the integral of 

the curvature tensor over the surface spanned by the contour C, 

a¢  = ~ ~ d ~ . ( v × ~ )  = ~ ~ a ~ . ~  = • x a ( c ) ,  ( 2 3 )  

S S 

where  R(C)  i s  a s o l i d  a n g l e  s u b t e n d e d  by the  c o n t o u r  C a t  p=0; t he  s i g n  

depends on the orientation of the contour. 
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The rotation of the real vector F (p,X) means a change of the 

phase of the complex function f(~,k) Berry's phase. 

For photons the angle of rotation (23) is exactly the angle of 

the rotation of the linear polarization. 

5. FINAL REMARKS 

I have shown that the curvature associated with the transport of 

the polarization in momentum space is the reason for the appearance of 

Berry's phase in the case of relativistic spinning particles moving in 

a slowly changing environment. 

However, it is not the only situation in which Berry's phase can 

manifest itself. Another field, in which one can expect Berry's theorem 

to work, is molecular physics. Very often one can use the Born-Oppen- 

heimer approximation and one can treat internal coordinates of nuclei 

as slowly varying parameters, to which the electronic wave functions 

can adjust at any given time. Those internal coordinates of nuclei may 

play a role of the adiabatically changing external parameters in Berry's 

theorem. Recently, an experiment on the two-photon resonant ionization 

of Na 3 clusters was reported I0 which indirectly proved the existence 

of Berry's phase for molecules. 
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Abstract 

A novel optical heterodyne technique for Raman Ramsey spectroscopy of atomic radio- 

frequency resonances Is reported. The method allows for high-resolution studies In an atomic 

beam as well as for the study of co~llslonal velocity diffusion of atoms within an optical Doppler 

distribution. Our experiments are performed on Zeeman sublevels In the Samarium X = 570.68 nm 

(J=l)-(J'=O) transition both In an atomic beam and In a vapor; In the latter case rare gas 

perturbers are added as collision partners. All our experimental findings are tn satlsfsctory 

agreement with theoretical predictions. 

I, Introduction 

Ramsey's method of separated fields for the observation of narrow radio-frequency (rf) 

resonances ts wetl known from atomic and moSecular beam experiments /1 / ;  tn general, these 

Ramsey fMnges are induced by use of two spatially separated rf  fields. More recently, Ramsey 

resonances have been observed also for a resonance Raman transition tn an atomic beam / 2 / :  

Here, the two rf  fields s]mpty were replaced by two modulated laser fields which can create 

sublevel coherence with hlgh efficiency; the Ramsey fringes were detected vla fluorescence from 

the optlcaJly excited state that couples the light fields to the ground state sublevels. 

In thls contribution we report on a novel coherent optical technique for Ramsey spectroscopy 

of r f  transitions In free atoms. The method relies on resonance Raman transitions to optically 

excite and probe sublevel coherence In atomic ground states or optically excited states using two 

separated atom-field interaction regions. In contrast to previous work, no second "oscillatory" field 

Is needed: Again a modulated laser field Is used for coherent Raman excitation of sublevel 

coherence; the required phase sensitive detection, however, Is achieved by Raman heterodyne 

detection 13,4 / of the atomic coherence using an unmodulated probe laser fleld In the second 

Interaction region. This coherent detection scheme Is exclusively sensitive on oscillating sublevel 
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coherence; thus an essentially background-free observation of the Ramsey resonances can be 

obtained. Let us point out that the Ramen Ramsey method is based on the creatlen and detection 

of oscillating sub~eve~ coherence; In this respect, It Is far different from other previous 

observations of Ramsey fringes uslng lasers in connection with atomic coherences at optical 

frequencies / 5 / .  

The coherent Ramsey technique reported here can be used to investigate rf resonances in 

atomic beams or in atomic vapors: (i) In atomic beam experiments using spatially separated fields, 

the new technique might be an interesting alternative for ultra-high resolution spectroscopy in the 

r f  range (see Sec. II). (ii) When being applied to an atomic vapor, the method allows the study of 

Ramsey resonances In velocity space /6,7/.  In thts case, counterpropagatlng excitation and probe 

fields are used; Ramsey interference patterns then show up due to collisionaJ velocity diffusion of 

atoms with sublevel coherence within an optlcal Doppier distribution thereby allowing detailed 

collision studies (see Sec. 1tl). 

I1. Raman Heterodyne Detection of Ramsey Resonances in an Atomlc Beam 

The principle of our atomic beam experlment is illustrated in Fig,1. The atoms interact 

successively with two laser fields; in the first Interaction zone a modulated laser field consisting 

of the carrier with frequency (~E and the sldebands with frequencies (~E + (~M drives a Zeeman 

split J=l to J'=O transition (see Rg.la). In a resonant Raman process a coherence between the 

Zeeman sublevels Is induced; here, we consider the creation of I& ml =1 coherence only. After 

leaving the laser beam the sublevel coherence simply oscillates at Its eigenfrequency Q (Fig.lb); 

thereby a phase shift between the sublevel coherence ( Q ) and the oscillatory laser modulation 

(~0 M) is built up. When, after a time ¢ , the atoms arrive at the second interaction zone, this 

phase shift accumulates to A M ¢ with A M = u M - O being the detunlng of the modulation 

frequency uM from the sublevel splitting frequency O. In the second interaction region the 

sublevel coherence is probed by an unmodulated laser field of frequency w E and, via a coherent 

scattering process, copropagattng coherent Raman fields with frequencies t~ E -+ Q are produced 

(FIg.lc). On a fast photodlode the Raman fields together with the probe laser field yield a 

heterodyne beat signal of frequency tD = I w E - ( ~)E -+ o ) I , The amplitude and phase of thls 

signal directly reveal the amplitude and phase of the sublevel coherence; thus, using a phase 

sensitive detectlon scheme tlke a double balanced mixer or a r f  lock-in amp~ifier, a phase 

sensitive detection of the sublevel coherence can be achleved (see Fig.2). 

The phase shift AM ~ resulting from the free evolution of the sublevel coherence in the 

field-free zone now shows up In the output signal of the lock-in amplifier; more precisely, a 

Ramsey type Interference pattern proportional to cos( AM ~ ) appears in the signal Ilneshape. This 

interference structure can be observed by sweeping the sublevel detuning; It becomes Increasingly 

narrow for a larger time of flight t , i.e. for a larger distance L between both interaction zones. 

Due to the velocity distribution of the atoms in the atomic beam, higher order Ramsey fringes 

(large A M ) will be smeared out but will essentially leave the central fringe (small A M ). 
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]Fig.l: (a) Modulated excitation process of Zesman coherence for a Zeeman-splR (d=l)-(J'=O) 

transition. (b) Free evolution of subleveq coherence during spatial motlon In between the two 

interaction zones.(c) Detection process showing the induced Raman sldebsnds. (d) Schematic of 

the experimental setup for the observation of Ramsey resonances. The photodiode PD is used for 

optical heterodyne detection of the Raman sldebands. 

A schematic of our experimental arrangement ls shown in Flg,2. The beam of a cw dye ring 

laser was splR into two parts to yield the spatially separated pump- and probe beams; the pump 

beam was phase modulated by means of an electrooptic modulation system MS in order to 

generate the modulation sldebands wRh frequenles ~a E -+ ¢u~. The carrier and the sldebands were 

orthogonally po4arlzed wRh respect to each other; the polarization direction of the carrier was 

chosen to be paraJlel to the transverse static magnetic field B that lifted the ground state 

Zeeman level degeneracy. In this way (see Rg.1) the carrier drives the optical ff -transition ( &m 

--" O), whereas the sldebsnds solely couple the o-transitions (&m =~1). 

The unmodulated probe beam was polarized parallel to the static magnetic field B and 

therefore only drives the optical ~ -transition. The simultaneous presence of oscillating I A m l = 1 

Zesman coherence in the second Interaction zone gives rise to coherent Stokes and anti-Stokes 

Raman sidebands of frequencies 0o E -+ Q that propagate In the same direction as the probe field. 

As a consequence of the selection rules, the Raman sldebands are linearly polarized In a dlrection 

that Is perpendicular to the static magnetic field B, The orthogonally polarized probe field and 

Raman sldeband fields were then sent through a ),/S-plate which Introduces an optical phase 

shift of x / 2  between the carrier and the Raman sldebends; this optical phase shift ensures that 
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Pig,2; Experimental scheme= MS, modulation system; B~, static magnetic field; X/#, retardation 

plate; A, polarization analyzer; PD, photodetector; DBM, double balanced mixer. The two principal 

axes of the 7./4-plate are oriented parallel to the ~ and ~ directions, respectively. 
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Fig.3: Measured Raman heterodyne signals of the detection beam as a function of sublevel 

detunlng &M for a beam separation of L=7 mm, Depending on the phase setting of the rf lock-In, 

the In-phase (a) and quadrature (b) component of the best signal can be monitored. 
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~g,4: Measured in-phase Raman heterodyne stgnals as a function of sublevel detunlng for three 

values of beam separation L. 

we detect those Rernan signal contributions that result from atoms being optic~lly resonant with 

the probe beam 17 / .  The polarization analyzer A behind the X/4-ptate flnaliy projects the carrler 

and Raman stdebands along a common direction in order to enable an optical interference at the 

photodlode PD. The heterodyne beat signal can then be detected by a phase sensitive electronic 

devlce; In our experiments we used a r f  lock-in amplifier for this purpose, 

Preliminary experiments were carried out In a Sm atomtc beam; here the 154 Sm X = 570.68 

nm (4f 6 6s 2 7F 1 - 4 f6 6s6pTFo ) line was used for optical excitation, Typically,laser powers In 

the mW-range were used with beam diameters of about 500 t~m. According to the Lande factor 

Of g j =1.5 for the J=l ground state of the even Sm isotopes, the Bohr frequency of the Zeeman 

splitting between the m-sublevels Is given by Q =2~ t 21.0 MHz (B/roT). Raman heterodyne 

signals of the Zeeman resonances were observed at a fixed modulation frequency u M = 2~ I 

10,0 MHz by variation of the Zeeman splitting Q via the external field B, In Rg.3 typical Raman 

heterodyne signals are shown for a separation of 7 mm between the Interaction zones of pump- 
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and probe beam; depending on the phase setting of the rf  lock-in amplifier with respect to the 

phase of the driving modulation field (o M , the "In-phase" and "out-of- phase" components of the 

heterodyne beat signal could be monitored. When the spati~d separation between the two laser 

beams was increased, the Ilnewldth of the Ramsey resonances decreased as displayed in FIg.¢. 

The data atso show that the signal-to-noise ratio strongly decreases for larger beam separations; 

this effect is mainly due to the bad quality of our present atomic beam and due to magnetic field 

fnhomoger~tles along the beam axis. More systamatlc studies on the signal lineshapes are in 

preparation using an improved atomic beam apparatus. 

As in the case of the Raman Ramsay experiments performed by Ezekiel and coworkers / 2 / ,  

various frequency error sources may be present and also have to be studied in detail with 

respect to our method: these Indude, e.g., atomic beam misatignmerrt, laser beam mtsallgnement, 

optically-induced level shifts and magnetic field lnhomogeneties. In this context let us note that no 

frequency error should occur due to optical path differences from the beam splitter to each of 

the two Interaction regions shown tn Fig.2 as only the excitation field Is modulated; In principle, 

even two independent lasers can be used to induce and detect the atomic sublevel coherence. 

Our theoretical treatment is based on a perturbation solution for the Raman heterodyne 

signal. The medlum Is modeled as an ensemble of 4- level atoms as shown In Fig.1. We are using 

the time domain for description: the atoms first experience a pump pulse and, after some time ~, 

another probe pulse that reads out the osclllaUng sublevel coherence. The solution of the 

time-dependent equations of motion can then be transformed easily into the local space. Special 

care is taken with respect to the Integration over the atomic velocity distribution within the beam. 

Rrst results show that the caloulated signal Ilneshapes are In satisfactory qualitative agreement 

with the measurements; details of the experiment together with the theory will be published 

elsewhere / 8 / .  In this respect let us mention that Dalton et al. recently gave a non-perturbetive 

theoretical analysis of Ramsey interference lineshapes In three-level lambda systems excited by 

laser fields / 9 / ;  their description, however, is closely related to the experiments of Ezekiel and 

coworkers / 2 /  and does not apply to our experlmantal situation. 

In contrast to previous experiments using Ramen Ramsay spectroscopy /2/ ' ,  our technique 

does not need a second oscillatory field to Induce Ramsey resonances: The Raman het~'odyne 

method yields phase-sensitive information on the sublevel coherence in a direct way and the 

Ramsey Interference pattern is obtained subsequently by demodulation of the beat stgnaJ in a 

phase-sensitive electronic device, Moreover, the technique presented here is essentially 

background-free; it is a simple transmission method with high sensitivity through optical 

heterodynlng. 

Obviously Raman Ramsey experiments are of interest because they have possible applications 

both in spectroscopy and In the development of new time and frequency standards, especlaJly In 

the r f -  and microwave range of the spectrum. This work clearly shows that very narrow optical 

features can be obtained by using coherent resonance Raman processes to induce and monitor r f  

resonances between two long- lived ground sublevels In a samarium atomic beam. The technique 

Itself should be also applicable to rubidium or cesium; in this case commercllally available 

semiconductor lasers may be used for excitation and detection of the hyperflne structure 

resonances of interest. 
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We also note that our technique may be applied to study sublevel resonances In optically 

excited states. Here. of course, the upper state lifetime has to be taken Into account; for a 

reasonable time delay between excitation and detection, however, subnatural Iinewidth features 

should be observable with acceptable slgnai-to-nolse ratio. Moreover, the Raman heterodyne 

detection technique may be directly applied to trapped ions /10/ ;  in this case Ramsey resonances 

may be obtained by using a time-separated pulsed excitation and probe field. Thus the Raman 

heterodyne detection of Ramsay resonances as reported here can find various useful applications 

in high-resolution sublevel spectroscopy. 

Finally let us briefly discuss a somewhat different Idea of Raman heterodyne detection of 

Ramsay resonances In an atomic beam. Over the last few years several projects are under way 

to study and demonstrate the potential performance achievable in cesium beam frequency 

standards In which laser driven optical pumping Is used for the atomic state selection and state 

detection in place of the conventional magnetic state selection /11/. Our proposal combines this 

approach with the Raman heterodyns detection technique: its main idea is outlined in Fig. 5. In a 

first step, a sublevel population difference Is created by optical pumping (Rg.5s). Then a r f  field 

(~H) resonantly excites the sublevel coherence (Fig.5b); this corresponds to the first atom-field 

interaction region. After leaving this rf  field region, the sublevel coherence freely evolves in time 

with frequency ~ as the atoms propagate along the atomic beam (FIg.Sc). Now, In a second 

(a) (b) (c) (d) 

.i 
Optical pumping RF Excitation Evolution Detection 

tOE 
(hE 11 #Y'n ~ L ............ 

Beam ~ 7 PD 

dc out 

P18.$, Outline of a proposal for Raman heterodyne detection of r f -  induced resonances in a 

Ramsey-type atomic beam experiment. For details see text. 
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atom-field interaction region, the sublevel coherence is read out by an optical probe beam yielding 

coherent Raman sldebands (Flg.Sd); these Raman sldebands can be monitored using optical 

heterodyne detection in the same way as discussed above. The rf  beat signal from the 

photodetector can then be demodulated using , e.g., a bouble balanced mixer as shown in Flg.5; 

obviously Ramsey Interference patterns will appear in the output of the electronic device for a 

sufficiently large separation L between the two Interaction regions. 

Details of this new proposal for Ramsey spectroscopy using Raman heterodyne detection will 

be published elsewhere / t 2 / ;  here we only mention that this technique is closely related to 

pre~tious work on optical heterodyne detection of r f  resonances In atomic vscx~rs /13/ .  In 

principle, the proposed detection scheme may easily be Incorporated Into atomic beam setups that 
already exist for the study of Ramsey resonances uslng r f  fields In combinatlon with optical 

pumping techniques. 

II1. Collision-Induced Ramsey Resonances In Veloclty Space 

The Ramsey resonance experiment discussed In this section utlllzes the same technique for the 

coherent optical excitation and phase sensitive detection of sublevel coherence as described above; 

It Is, however, performed In an atomic vapor, where the two laser fields spatlally overlap (see 

FIg.6e). Here, the modulated pump field and the unmodulated probe field propagate In opposite 

dlrectlons within the sample cell. Consequently, for a nonzero laser frequency detunlng with 

respect to the Doppler broadened optical transition ( &IB * 04 the two fields Interact with 

different atomic subgroups hevlng opposite velocities (Rg.6d], The width of the Interaction zones 

In velocity space Is determined by the homogeneous optical Ilnewtdth F . Thus, a sublevel 

coherence Is created by the modulated pump field In atoms with a velocity centered around -v o , 

whereas the probe field is capable to detect the subievel coherence In atoms with velocity +v o . 

Hence, the probe beam can create coherent Roman stdebands only tf the active atoms change 

their velocity from -v o to +v o , I.e. If they "move" tn velocity space. 

One well known mechanism that provides velocity changes In a vapor Is due to collisions that 

preserve the internal atomic structure /14/ .  Here we consider velocity changlng collisions of the 

active atoms wlth added rare gas perturbera. During thls colllstonal redistribution from the veloclty 

w o to other velocities the active atoms are not affected by the laser fields due to the Doppler 

effect; as a consequence, the sublevel coherence evolves at Its etgenfrequency t3 (see FIg.6b). If, 

after a certain time ¢ , the active atoms accidentally "arrive" In the opposite, velocity subgroup 

+vo , the interaction with the unmodulated probe field leads to the generation of coherent Roman 

sldebands ( Flg.6c); of course, the Raman sidebands can be created only If the sublevel coherence 

has not been destroyed during the velocity diffusion process. Then, quite slmllar to the more 

conventional atomic beam Ramsey resonance experiment (see Sec.ll), these Ramen sldebands can 

easily be monitored using the Raman heterodyne technique (Fig.7). Most Importantly, the velocity 

diffusion time t leads to a phase shift A M ~ of the photodetector signal ( ( ~ )  wlth respect to 

the reference signal ( uM ), thereby introducing Ramsey type Interference patterns proportional to 
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a) b) c) 

~E-WM Wl~ M Wl-J~ WE÷J'L 
WE . I ~  

2 ~ O-m 
! 

d) Excitation Diffusion Detection 

e) 

vapour cell II ~E'r~E -'CL 

l JIBS 

Fi8.6: (a) Modulated excitation process of Zeeman coherence for a nondegenerate (J=l)-(J'=O) 

transltlon. (b) Free evolution of sublevel ooherence during velocity diffusion, (c) Detection process 

showing the Induced Raman sldebends. (d) Outline of the velocity selectivity of the excitation and 

detection of sublevel coherence in a Doplder- broadened optical transition. (e) Experimental 

scheme for the observation of collislon-lnduced Ramsey resonances In Sm vapor. 

cos( A M t )  tn the detected signal llneehapes, 

In this Ramsey resonance experiment the "motion" of the active atoms In velocity space due 

to VCC plays a role similar to the spatial motion of the atoms In the atomic beam experiment. 

Thus Ramsey-type fringes are expected to occur, if there is a separation between both 

Interaction regions In velocity space, t,e. if the laser frequency ts detuned from the center of the 

Doppler profile (AEtO). 
A more detailed schematic of our experimental arrangement ts shown In Ftg.7, The pump beam 

of frequency (d E was phase modulated by means of an etectrooptlc modulation system to yield the 

modulation sldebands with frequencies w E +-(~M' The amplitudes of the orthogonally polarized 

carrier and sldebands were adjusted to yleld equal dipole coupling strengths for the three Sm 

transRlons In order to avoid optical pumping between the m-sublevels of the ground state / 7 / .  

This modulation and polarization scheme permits an excitation of Zeeman coherence In a slngle 

velocity subgroup orgy /6.7/ .  The counterpropagatlng probe beam was polarlzed parallel to the 

static magnetic field B. The total field behind the sample cell. consisting of the probe field and 

the Raman sldebands, passed through a )v'4-plate and a polarization enalyzer A for Raman 

heterodyne detection of" the sublevel coherence. The heterodyne beat signal then was monltored by 



258 

from Laser ~ dc out 

lrZ ^ 

~ p t e  X/4 A PD 

PIg.7: ExperlmentaJ scheme: MS, modulation system; B, static magnetic field; X/4, retardation 
plate; A, polarization analyzer; PD, photodetector. The two principal axes of the )v'4-plate are 
oriented parallel to the ~ and ~ directions, respectively. 

x2.5 

I ~ 0  MHz 

<'J j / /  ~ 5 5 M H z  
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SUBLEVEL DETUNING ~ "  (MHz) 

B16.8: Measured RHS In the case of He perturbers as a function of the sublevel detunlng A M for 
different laser detunlngs &E , showing narrow Ramsay-type Interference patterns. 
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means of a rf lock-in amplifier as discussed In Sec.ll. 

The experiments were performed In atomic samarium vapor contalned In an aluminum ceramic 

tube. The 15¢Sm % = 570.68nm (4 f  6 6s 2 7F 1 - ¢f6 6s6p 7F 0 ) line was used for optical 

excitation. Natural Sm consists of seven isotopes; amoung these isotopes the 154 Sm and the 152 

Sm are the most abundant ones. Corresponding to a celt temperature of about 1000 K, the width 

of the Doppler broadened transition amounts to ku = 2~o 580 MHz; the homogeneous optical 

ttnewtdth (HVVI-IM) is 2 ~ l  230 kHz according to the lifetime (340 ns) of the excited 7F 0 state. 

For the measurements of the sublevel resonance signals, the modulation frequency (e M was 

kept fixed ( ~M = 2~ • 10.0 MHz) and the Zeeman splitting was varied by sweeping the external 

magnetic field B. In Fig.8 typical in-phase Raman heterodyne signals (RHS) are shown as a 

function of the subtevel detunlng with the laser frequency detuning as a parameter; here He 

buffer gas was added at a pressure of 70 Pa. The sublevel detunlng &M is given tn frequency 

units according to the magnetic field dependence of the Zeeman splitting frequency. It can be 

seen clearly that the Ilneshape of the Zeeman resonances changes drastically for Increasing laser 

detunlngs &E • In the case of &E = 0 the observed RHS display a very broad resonance 

structure. However, If the laser is slightly detuned from the center of the Doppler profile (e.g. 

for &E/2~ = 55 MHz), the width of the resonance decreases by almost one order of magnitude 

and a pair of symmetrical sldelopes begins to develop. For larger laser frequency detunlngs this 

characteristic llneshape patterns becomes more and more pronounced; It Is accompanied by a 

further decrease of the resonance linewidth and of the signal amplitude, The observed lineshapes 

thus show the typical Interference pattern of Ramsey resonances, This similarity Is seen most 

obviously In Fig.9, which shows a particular nice RHS In the case of a very large laser frequency 

detunlng; here again, He was used as a buffer gas. Within the Investigated pressure range, the 

basic RHS Ilneshape features remain qualitatively the same .for the different rare gas species. The 

Ramsey-type Interference pattern, however, Is less pronounced for the heavier rare gases /7 / .  

The Important role of collisions for the generation of the RHS becomes evident by considering 

the pressure dependence of the RHS arnplltude. A typical result for He perturbers Is shown tn 

Flg.lO; during thls measurement the laser detunfng was kept fixed at AE,/2~ = 300 MHz. At first, 

the RHS amplitude Increases with increasing buffer gas pressure; It subsequently approaches a 

maximum value at a certain pressure and finally decreases again. 

Our theoretical treatment relies on a steady state perturbatlve solution of the density matrix 

equations for the coherent excitation and detection processes shown in Rgs. 6a and 6c, 

respectively; the effects of VCC on the ground state sublevel coherence are taken Into account by 

means of a semlclasslcal transport equation. The resulting RHS can be written in the form 16,7/ 

S(A M) = ~ F(t) cos( A M t) dt , (1) 

with F(t) given by 

F(t)~,exp C(-Vo/U) 2] exp (-yt) p(-vo-~ v o ,t) . [2) 

The function p(-Vo-~ v o , t) denotes the solution of the Boltzmann transport equation 
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_.a , (3) ~t p (-v° "~ v°' t) = - Yvcc  P(-Vo-' Vo, t) + j 'dv p(-Vo~ v t) w(v -~ v o) ; 

here, W(v -> v o) is the one-dlmenstonal collision kernel and Yvcc denotes the collision rate for 

VCC. p(-v o -~ v o , t) describes the probability to find an atom at time t with velocity v o , if at 

time t = 0 its velocity is - v  o . The Gausslan In Eq.(2) describes the usual Doppler profile that 

yields information on the number of the initially excited atoms; the exponential exp( -y t )  describes 

the decay of sublevel coherence during the velocity diffusion process. The loss rate 3"=y¢o1+ Ytr 

results from depolarizing collisions (Ycol )  and spatial diffusion ( Ytr ) out of the laser beam. 

The experimental curves can be analyzed by means of the theoretical result Eq.(1), which 

essentially predicts that the sublevel resonance Ilneshapa generally can be written as a Fourier 

transform of a certain function F(t). This function F(t) describes the distribution of diffusion times 

of atoms with Zeeman coherence moving from -v o to +v o ; it can obviously be obtained from the 

measured signals by a simple Fourier transformation according to 

co 

_ 1 _ ~ j ( A M  ) cos( &M t )  dA M (4) F(t) - ~ _ 

In this way a temporal resolution of the velocity diffusion process is achieved. When the Fourier 

transformation (4) Is applied to the measured curves, the data points (+++) shown In Flg.11 are 

obtained, These Fourier transforms obviously demonstrate that the most probable as well as the 

mean diffusion time get larger for an Increasing laser detunlng, i.e, for a larger separation 

between the interaction zones of the pump- and probe fields In velocity apace. Particularly for 

large laser detunlngs the Fourier transforms show that there are barely any signal contributions 

Z 
<¢ 

DIFFUSION TIME (~ls) 

]Rig.It: Typical dlstrlbutions of diffusion times of 

Zeemen coherence In a H e  atmosphere (PH= = 

70 Pa) for different laser detunlngs (a: &E/2~t 

= 55 MHz; b: 130 MHz; c: 220 MHz; d: 360 

MHz). The data points are obtained by a 

Fourier transformation of the measured RHS; 

the solid lines correspond to an overall fit 

based on the FP-model: The values for the fit 

parameters are y = 6.0 = 10 5 /s  and Yth = 

1.4 • 10 5 /s .  
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arising a short tlme after the excitation: It takes a certain time until the first Sm atoms "arrive" 

at the opposite velocity subgroup *v o . Due to this "intrinsic" time delay between the excitation 

and detection process and due to the phase sensitive detection scheme, the resonance Iineshapes 

show the observed Ramsey-type Interference structure that ls connected with the Ilnewldth 

narrowing. The relative heights of the Fourier transforms (or, equivalently of the measured RHS) 

Indicate that the number of atoms contributing to the RHS is strongly reduced at large detunlngs 

&M : Rrst, the number of atoms which Initially were excited Is reduced according to the Doppler 

factor and, more important, the amount of detectable sublevel coherence is deoreased due to 

losses during the larger diffusion time. 

In order to analyse our experimental data on a quantitative base, we tried to fit the Fo~ler 

transforms of the measured RHS. The calculation of F(t) requires a solution of the Boltzmann 

transport equaUon (3}; If we assume a Brownisn motion-type collision model, I.e. the ,'weak" 

collision case, the Boltzmann equation (3) reduces to a Fokker-Planck (FP) equation /15/.  The 

FP-equatlon contains only one tlme constant tth that characterizes the approach of a given 

velocity anlsotropy towards thermal equllbrlum. With the use of the well known solution of the 

FP-equation / 6 , 7 /  we have fitted the distribution functions F(t) to the measured curves using only 

two free parameters, the FP-parameter Yth = 1/t th and the loss rate 1' • An example of such 

an overall fit Is shown In FIg.11; obviously, the FP-approach yields a good description of the 

experimental data. From these fits the thermalizatlon time ~:th arid the loss rate ¥ can be 

determined; for Sm-He collisions this time constant yields 1~th = (570 -+ 100 p.S Pa)/p, and the 

pressure broadening 1'¢ol = c¢o1~' P for depelarlzlng collisions ylelds the coefficient co= I = 
(2~[ i0.48 + 0.05 kHz)/Pa. In the case of heavier rare gas perturbers like Ar or Xe, however, 

the FP-model fails to describe the colllslonal velocity diffusion process; here, a more complex 

description of VCC based on the phenomenologlcel Kellson- Storer collision kernel yields a better 

agreement with the measured collision data /7 / .  

In conclusion, we have reported on the observation of collision- induced Ramsey resonances In 

atomic Sm vapor In the presence of rare gas perturbers. The formation of these resonances Is 

due to the collislonal diffusion of Sm atoms In velocity space; here, In the creation of sublcwel 

coherence, collisions are of no importance, In contrast to recent studies by Zou and Bloeml:~=rgen 

on collision- assisted Zeeman coherence /16/.  Moreover, our measurements have demonstrated 

that the observed Itnewidths of the Zeeman resonances can assume values tying below the timit 

given by the time rate of depolarlzlng collisions and by the transit ttme broadening /6 ,7 / .  Flna]ly, 

we have shown that the time constants for the colllslonal thermallzation of the active atoms can 

be derived from our data. Thus our experimental technique may find useful appllcetions In hlgh 

resolution sublevel spectroscopy In velocity space and In collision studies. 
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DISSIPATIVE DEATH OF QUANTUM 
EFFECTS IN A SPIN SYSTEM 

Rainer Grobe and Fritz Haake 
Fachbereich Physik, Universit~t-GHS Essen 

Postfach 103 764, D-4300 Essen 

We investigate the influence of very weak dissipation on the dynamics 

of a kicked spin system whose nondamped part [1] is described by the 

Hamiltonian 

2 n=~ 
H = p Jy + ~j Jz Z 6 (t-n) 

n~-~ 

The timedependent Hamiltonian H commutes with the angular momentum vec- 

tor 72 so that we can describe the system in a(2j+l) dimensional Hil- 

bert space. The classical limit can be thought of as putting the angu- 

lar momentum quantum number j to infinity. 

Depending on the strength of the nonlinearity K we find classically re- 

gular or chaotic dynamics, We have compared the evolution of the quan- 

tum expectation value of a scaled angular momentum component J_K with 
J 

an ensemble average of many classical trajectories. We found that in 

the classically regular domain the corresponding quantum expectation 

value reveals a rather regular sequence of collapses and revivals with 

a period proportional to j. In the chaotic regime, however, we found 

erratic recurrencies. 

The dissipation mechanism chosen in this model also leaves the "length" 

of our angular momentum vector ~ invariant and is described by the su- 

perradiance master equation [2] for the reduced density operator. Clas- 

sically it corresponds to a relaxation of the vector ~ to the pole 

Jz = -j of the sphere with radius j. 

Surprisingly we found [3] in the quantum system dissipation manifests 

itself already for times much smaller than the inverse damping constant. 

Typical quantum phenomena like recurrencies are exponentially damped at 

a rate which is proportional to j. After a time proportional to the in- 

verse spin length all coherencies are dead. 
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In the classically regular domain dissipation acts quite selectively: 

Classically important eigenstates of the nondamped dynamics are affect- 

ed only weakly whereas the modes contributing only to quantum fluctua- 

tions are very sensitive to dissipation. 

As a second phenomena we have investigated the influence of dissipation 

on coherent tunneling. A perturbative analysis reveals that the cohe- 

rent tunneling frequency is decreased by the same amount by which a 

j-proportional damping would shift the natural frequency of the classi- 

cal harmonic oscillator. These findings are in excellent agreement with 

our numerical data. 
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PERIOD DOUBLING IN A QUANTIZED VERSION OF HENON'S MAP 

R. Graham, S. Isermann 

Fachbereich Physik, Universit~t Essen GHS 

We consider a renormalization approach under period doubling of a quantized version 

of H~non's map, which is known to exhibit chaos and to reach the chaotic state via 

the period doubling route. The influence of quantum noise on the period doubling is 

investigated. Writing H~nons map in the form 

Xn+ 1 = r(Xn,Y n) = 1 - ax~ - Ey n 

Yn+l = S(Xn'Yn) = EYn 

(1) 

the quantized version can be deduced from a damped, kicked oscillator [i] and the 

quantized map can he rewritten in the form of a simple c-number-map in which non-de- 

terministic c-number-quantities appear, which are distributed according to some qua- 

si-propability densities [2] 

Xn+l = r(Xn'Yn) + ~n (2) 

Yn+l = S(Xn'Yn) + Qn 

Here ~n and n n are stochastic c-numbers with non-classical statistical properties. 

Combining these equations to a single two-step recursive map in standard form [2] the 

latter reads 

Zn+ 1 + BZn_ 1 = 2Cz n + 2z~ + ~n , B = E 2 (3) 

after appropriate redefinitions [2]. The special case qn=0 will be referred to as the 

deterministic case. For the nonvanishing cumulants of the non-classical force ~ we 

obtain 

<~> ~ ~QO [~] I+B I-B 

[fiaa] 2 B 
<q> ~ ~e 0 = [-~-] 

where w is the frequency of the kicked oscillator and T is the temperature of the 

heat hath in which energy is dissipated. Renormalization transformations will later 

generate the following cumulants 

<~n~n±l > ~ Q1 (5) 

<C~Cn±I > E Rzl 

An approx ima te  r e n o r m a l i z a t i o n  scheme f o r  t he  d e t e r m i n i s t i c  map has  been deve loped  by 
Helleman and McKay [ 3 , 4 ] .  A f t e r  each p e r i o d  d o u b l i n g  t he  map (3) can be r e w r i t t e n  
a f t e r  an a p p r o p r i a t e  r e d e f i n i t i o n  of the  v a r i a b l e  z n in  i t s  o r i g i n a l  form wi th  we l l  
known r e c u r s i o n  r e l a t i o n s  f o r  t he  c o e f f i c i e n t s  B and C [ 3 , 4 ] .  In a d d i t i o n  to  t h e s e  
r e l a t i o n s  we ge t  r e c u r s i o n  r e l a t i o n s  f o r  t he  n o n - c l a s s i c a l  s t o c h a s t i c  f o r c e  

~ = ~(BC2n_ 1 + eC2 n + C2n+l ) (6) 
with 
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(2C + 4z2+)2 
a = e +  

I + B  
e = 2C + 4z . ,_  /. 

(7) 

where z2+, z2_ denote the stable two-cycle of the deterministic map (3). The 
following recursion relations for the cumulants are generated from eqs. (4)-(6) 

[2,5]. 
(8) 

[061 .f,-o'+., .o,-.,] r061 r.0:1 r,-o'.., ,.,.÷.', ,o,-o.,I 
QIJ = ¢~ [ B e(l+B) LQIj JR+I j = ~'J B e(l+Be) 2Be / +i 

LR-IJ [ B2 2Be e (e+BZ) J [R_IJ 

These recursion relations determine the scaling behavior of the quantum fluctuations. 

In the conservative case (B=I) and C close to C~(1) the second order cumulants va- 

nish. The largest eigenvalue of the matrix renormalizing the cubic cumulants leads to 
an increase of the effective ~ after each period doubling according to 

fi' = 69.90 ~ (9) 

A similar numerical result is obtained by Grempel et al. [6] by a different method 

(~'=Ja2el~=70.83~) which i s  only appl icable  to conserva t ive  maps however. In the case 
of very weak d i s s ipa t i on  the two d i s t i n c t  types of quantum f l uc tua t i ons ,  the cubic 
cumulants associated with the nonlinearity of the classical map and the quadratic 

cumulants with the linear mechanism of dissipation, compete with each other. Since 
the scaling of ~ is already fixed we get a rescaling of the effective temperature by 

the matrix, which renormalizes the second order cumulants. We find from its largest 

eigenvalue 

coth[1 ~ ] ' =  2.247 coth[1 ~ ]  (10) 

This shows, that despite of the effective increase of ~ by renormalization the ratio 

5~/kT effectively decreases. For the strongly dissipative case B~O the dimensionless 
ratio <~>2/<C~>~, which measures the relative importance Of the cubic cumulant, 

decreases rather quickly under renormalization by a factor 0.132. 

In conclusion we can say that quantum fluctuations in a system, which is not 
strictly conservative, on the period doubling route to chaos very rapidly act like 

classical fluctuations. 
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RESONANCE OVERLAP AND DIFFUSION OF THE ACTION VARIABLE IN 

THE LASEREXCITATION OF MOLECULAR VIBRATIONS 

M. Hb3nerbach, R. Graham 

Fachbereich Physik, Universit~t Essen 

Experimentally there are strong indications that chaotic dynamics is involved in the 
multi-photon dissociation of molecules in strong infrared laserfields. We discuss an 

appropriate anharmonic oscillator model classically and apply arguments from the 

theory of quantum localization to make qualitative predictions of quantum effects. 

The model we investigate is 

2 • ~ 2 
= ~ + D I $ - exp(- ~ X }J - E 0 x cos~t (I) H(p,x,t) 

The anharmonic oscillator is of the Morse type, which is a suitable model to describe 

vibrational excitation of a diatomic molecule. In order to discuss classical chaotic 

dynamics it is useful to transform the Hamiltonian (i) into action and angle 

variables [i]. 

H(I,O,t) = 21 - 12 + g cos~t in [i + q~I--I-'~cosS 1 
ii:i} 2 ....... c2) 

Here we made the following rescaling of variables. 

, I ~ I , t ~ t , w ~ w , S ~ 8 - ~/2 (3) 

As a criterion for the onset of chaotic behaviour we use Chirikov's criterion of 

resonace overlap [2]. A similar analysis was performed by Jensen [3] for a classical 

electron in a 1-dimensional Coulomb potential. The criterion requires the Fourier 

series expansion of the perturbation. 

H(I,8,t) = 2I - 12 + g ~ Vm(I) cos (mS-~t} (4) 

The maximum distortion of orbits in action - angle space will occur at resonances, 

where the phase , m8 - ~t , is stationary. The values for the resonant action 

variables are 

I m = 1 - ~m (5) 

To consider the width of the resonances, we made an approximate transformation in the 

vicinity of the resonant islands. The width ~ is when be given by 

W m = 4 161 
2 I=I m 
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The Fourier amplitudes Vm(I) can be found exatly 

(-i) m+l I m/2 
VN(I) - ~ [ 2~ - 2 In (1-I) 5m,O (7) 

The result for the width W m is then 

~m = 2 ~ - ~  i+~ ~8) 

Resonance overlap occurs when the width of the islands is greater then the distance 
between two neighbouring islands, i°e. 

Wm + Wm+l > - I m (9) 
z Im+l 

This inequality defines an approximate criterion for the critical coupling gc 
required to destroy all KAM surfaces between the m and m+l island chains. For m >> 1 

we find 

_~2 e~ gc(m) - ~ [1+ ~( 1 ) ] (10) 

The comparision of eq. (i0) with the numerical calculations shows good agreement. For 
g > gc(m) all resonances (5) of the order larger than m can be reached from the m'th 
resonance by a classical diffusion process of the action variable. The diffusion 
constant D(I) of this process can be calculated in the quasi-linear approximation 

[3,4] and we find 

D(1) ~ 1 (11) = TI~ [~T] u/2(1-I) 

The mean first passage time T for the action I(t) to diffuse across the border of 

dissociation at I=l is then 

392 ~ e-~ ~ ~ 1-I~u~ ) 
(12) 

in good qualitative agreement with numerical results. Quantum mechanically classical 

chaos may induce Anderson-type localization of the quasi-energy states with respect 
to the action variable. Preliminary investigations indicate that this does not happen 

in the present case due to the fact that D(I) diverges for I ~ I, which would imPlY a 
large localization length, while at the same time the size of the interval (l-I) 
where localization could occur shrinks to zero. However, a different type of locali- 

zation due to Cantori ( = fractal remnants of KAM tori ) exists in this system, as 
has recently been shown in [7]. 
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WINDING NUMBERS AND COLLISIONS BETWEEN ATTRACTORS IN A LASER SYSTEM 

J. Tredicce, R. Gilmore, H. G. Solari and E. Eschenazi. 
Department of Physics and Atmospheric Science, Drexel University, 

Philadelphia, PA 19104, U.S.A.. 

We consider the standard model for a CO 2 laser based on the rate equations 

for the intensity, u, the population invertion, z, and modulated loses, in the 
(normalized) form 

du/dt -- (z - R cos(~t)) u 

dz/dt = 1 - ¢1 z - (1 + ~2-z) u 
(1) 

It has been shown experimentally 1 that the CO 2 laser with modulated loses displays 

chaotic behavior even when forced at moderate amplitude. 
A detailed 2 study of equation (1) is able to explain most (if not all) the 

observed features, in terms of the coexistence of several attractors with different 
basins of attraction for a given set of parameters. 

The general description of the dynamics through the bifurcation diagram is as 
follows: 

For no force (R = 0) there are two fixed points; a saddle at (u,z) =(0,1/¢1) and 

a node at (1,0). This last one is the unperturbed mode of operation of the laser. 
The saddle point is invariant under changes of the strengh R and remains at 

(0,1/¢ 1 ) for all R. The node initiates a period doubling cascade which back bends (at 

Rin ) in an inverse saddle-node bifurcation. This bifurcation involves the period two 

orbit born out of the period one in a pitchfork bifurcation together with an unstable 
period two orbit born at a saddle-node bifurcation at R 2. There is a coexistence of 

attractors, one belonging to the unperturbed state of the laser and the other formed by 
the node created at R 2 and its cascade. 

The succession of pitchfork bifurcations reachs the acumulation point and 
subsequently undergoes a period halving (inverse) cascade. 

There is simultaneously a series of saddle-node bifurcations which creates 
periodic orbits of periods 3,4 ..... n .... for increasing values of R, (Rn). The nodes of these 

orbits undergo complete cascades. We call a branch the series of events starting in a 
saddle-node bifurcation, including the noisy periodic attractors of the inverse cascade. 

The orbits created at R n are characterized by one peak an a charge-time of 

n-1 periods approximately, in addition to this serie, there exist others branches which 
create more coexisting attractors, although these orbits are not easy to detect due to 
the smallness of their basins of attraction. In particular, we have found another branch 
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of period 5 coexisting with members of the main branch and the branches born at R 3 

and R 4. 

Different coexisting attractors can interact through external and boundary 
crisis resulting in the fusion of their respective basins of attraction. 

For a fixed value of the parameters ¢1, ¢2 and £~ in (1), those external and 

boundary crisis came in a given order with respect to R but, would they came in the 
same order if we change ~1, ~2 or ~ ?. 

If the dynamics is higly sensitive to changes in the parameters we lose all 
possibilities of comparision between the theory (or models) and the experiments and 
even the reproductiveness of the experiments. 

Fortunately enough, there are constraints impossed on the dynamics by the 
way in which the oribts wrap around each other. Those constraints are well represented 
(for forced damped two dimensional systems) by the winding numbers and the 
collection of them, the intertwining matrix 3. 

The relative winding number between the orbits y,(xy,,(uy, zy)(t)), and 13, 

(Xl3=(ul3,zff)(t)) of an arbitrary forced two dimensional system is defined by, 

niJ= 1/(I: p7 pl3)~'dt {[(xyi-xl3J ) A d(x~ i - xl~J)/dt ]/(xy i- x13J)2 } 

[0, • p~, pff ] 

(2) 

where A means external product, and py Pl3 are the respective periods of 1'and i3. The 

index i j in (2) stand for the several different pairs of initial conditions possible for a 
fixed phase of the forcing term, i. e. 

x i = x(i ~) i=O...py , xJ = x(j ~) j=O...pl 3 . 

It has been shown 3 that the winding numbers (W.N.) are invariant under 
continuous deformations if both orbits yand t~ continue to exist during the process. 

The W.N. can be generalized to pairs composed by a chaotic localized attractor 
and a periodic orbit and even two chaotic attractors. 

One of the most useful properties of the W.N. is that if two orbits (chaotic or 
not) are involved in a collision, then they have the same W.N. with respect to all the 
other orbits (not necesarily attractors) present at the parameter value of the collision 
and which are not in the closure of the attractor. 

Based on this property and the intertwining matrix for the system (in our 
case eq. (1)), it is possible to understand what will be the order of the succesive 
crisis. 

Predictions based on this kind of analysis of eq. (1) have been recently 
confirmed in experimental observations 4. 
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We finally stress that W.N. can be measured directly from the experimental 
data, even for orbits which do not coexist simultaneously. 

H. G. Solari is a fellow of the Consejo Nacional de lnvestigaciones Cientfficas 
y T6cnicas of Argentina. J. R. Tredicce acknowledges a "Josep H. DeFrees" grant of 
Research Corporation. 
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SQUEEZED QUANTUM FLUCTUATIONS AND NOISE LIMITS IN 

AMPLIFIERS AND ATTENUATORS 

M Barnett l, C R Gilson 2, S Stenholm 3 and M A Dupertuis 3. 
Optics Section, Blackett Laboratory, Imperial College, 

London SW7 2BZ, England. 
2Kings College London. 3University of Helsinki. 

Conventional linear amplifiers and attenuators add quantum fluctuations 

to a signal (i). This additional noise is an unavoidable consequence of 

quantum mechanics and is responsible for a reduction of the signal to 

noise ratio during processing. Moreover, these fluctuations mean that 

even strongly squeezed input light leads to an unsqueezed output if the 

amplifier gain exceeds a factor of two (2). However, devices exhibiting 

squeezed fluctuations in the gain or loss medi%~n may add squeezed quantum 

noise to the signal. This squeezing of the added noise leads to an im- 

proved signal to noise ratio, in one quadrature of the output, compared 

to the limits associated with conventional devices (3-6). 

An ideal, quantum mechanical, linear amplifier or attenuator multi- 

plies an input signal by a gain factor G ½ and adds Langevin-type quantum 

noise to the signal. In the Heisenberg interaction picture the annihila- 

tion operator for the output, a °ut, is related to the input operator, 

a in, by the expression 
a °ut = G½a In + R 

Here R is the result of quantum fluctuations in the gain or loss medium. 

For truly linear operation we assume the added noise operators to com- 

mute with the input-field operators. The unitarity of quantum mechanics 

requires the conservation of the con~nutator (a,a+). Therefore, the added 

noise operators are constrained to obey the commutator (R,R +) = I-G. 

We define the hermitian quadrature phases by relation to the annihila- 

tion operator a = a I + ia2, with a similar expression for the reservoir 

noise operator R = R 1 + iR 2. If we assume that the initial states of 

the signal mode and gain or loss medium are decorrelated, then the var- 

iances in the output quadratures are 

• out. 2 G( in 2 
(~al ,2~ = Aal,  2) + AR_,2 

Clearly, the fluctuations in the output are supplemented by the additive 

contributions AR~ 2" The additional fluctuations are limited by the 

Heisenberg uncertainty principle. 
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ARI~R 2 > !/411 - GI. 

Conventional devices have phase-insensitive noise associated with the 

gain or loss medium and so produce equal added noise variances AR~ = AR~. 

If the noise associated with the gain or loss medium is squeezed, then 

the noise added to one of the output quadratures, during processing, is 

less than that added by any conventional device. Naturally, the conju- 

gate quadrature must become very noisy for the uncertainty principle to 

hold. 

The principle of low noise signal processing may be demonstrated by 

considering a specific amplifier or attenuator model. We have speciali- 

sed our general discussion to a simple model in which the gain or loss 

medium takes the form of a reservoir of inverted or conventional har- 

monic oscillators respectively (3,4). In this model, the noise added 

to the signal during processing is dominated by those elements of the 

gain or loss medium with transition frequencies that are near to reso- 

nance with the signal mode. The signal and its associated fluctuations 

can be manipulated by specially preparing or 'rigging' the reservoir 

state. Three classes of reservoir state are of particular interest. 

If the reservoir oscillators are prepared in their vacuum states, then 

the amplifier and attenuator reproduce the limiting behaviour of conven- 

tional devices. Thermal reservoirs, in which the loss medium is pre- 

pared at a finite temperature or the gain medium is prepared at a finite 

negative temperature, degrade the output signal to noise ratio below this 

conventional limit. If the reservoir is prepared in a multimode squeezed 

state, then amplification or attenuation with reduced quant~irn noise is 

possible for one quadrature of the output. Squeezed reservoirs may also 

reproduce noisy thermal beha~iour. 
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ORDERED STRUCTURES OF IONS STORED IN A RF-TRAP 

R.Casdorff, R.Blatt and P.E.Toschek 
I.Institut far Experimentalphysik, Universit~t Hamburg 

JungiusstraBe 9, 2000 Hamburg 36 

Laser cooling of ions /1/ and atoms /2/ and subsequent realization of 
magnetic /3/ and optical traps /4/ for neutral atoms have lead to the 
consideration of crystallization of ions /5/ and possible Bose conden- 
sation in light pressure traps /6/. In particular, ordered structures 
have been found to occur /7/ for ions confined in a rf-trap, and va- 
rious spatial configurations have been predicted. However, experimen- 
tal verification is still lacking. On the other hand, many years ago, 
Wuerker et al. /8/ performed an experiment with charged aluminum par- 
ticles stored in a rf-trap almost cooled to rest of the viscous 
drag of the atmospheric background pressure,where oraered structures 
were indeed observed, however in patterns different from the results 
of Ref. 7. Numerical calculations based on a Monte-Carlo-Simulation 
enable us to predict the shape of various ordered structures of few 
trapped ions under the irradiation by the eooling light of a cw dye 
laser. The ions are treated as classical particles, their motion being 
determined by the time dependent trap potential and the mutual Coulomb 
repulsion. Laser cooling is included by random spontaneous emission as 
in Ref. /9/ where the simulation procedure has been derived for free 
particles. Comparison of the simulation results with the experimental- 
ly observed structures /8/ and with experimental as well as theoreti- 
cal distribution functions /I0/ of ion clouds shows excellent agree- 
ment. For these reasons we believe our simulation procedure to be cor- 
rect; we are able to predict reliable ordered structures. 

The calculation reveals the following features: 
(I) Ordered structures are readily obtained in the process of laser 
cooling. In contrast with Ref. /7/, the structural arrangement of up 
to 10 ions is in the X-Y plane of a rf-trap, provided no dc-potential 
is applied (trap geometry:Z 0 = X o / /~-- ) ~ If more than I0 ions are 
loaded to the trap the structures develop additional layers parallel 
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to the X-Y plane, the ions generally being aligned along the field li- 
nes of the trapping field (of. Fig. 2). 
(2) Small imperfections in the trap geometry or slight asymmetries of 
the cooling laser with respect to the center of gravity of the ion 
cloud lead to rotation of the structures. 
(3) The ratio of Coulomb-energy over kinetic energy which determines 
the cooperative behaviour of such a dilute plasma /II/ is periodic in 
the drive frequency and mean values ~ I00 can be achieved. At values 

170 crystallization has been predicted./12/. 

The numerical simulation of ordered structures of trapped ions in a 
rf-trap under the influence of laser cooling is a powerful tool for 
the clarification of the dynamics of few-body systems. 
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QUENCHING OF QUANTUM NOISE AND DETECTION OF WEAK OPTICAL 

SIGNALS IN THE QUANTUM BEAT LASER 
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and 

Central Research Institute for Physics, 
H-1525 Budapest, P.O.Box 49, Hungary 

Abstract: Starting from a Hamiltonian model of the coupled three- 

-level/two-mode system, a nonlinear quantum theory of the quantum beat 

laser is developed. The theory is valid under the special conditions 

that lead to correlated spontaneous emission laser (CEL) operation in 

the linear theory. It is shown that vanishing of the diffusion cons- 

tant for the relatiVe phase persists in the nonlinear theory and this 

operation is stable above threshold, We show, on the example of the 

CEL gyro/gravity wave detector, how this effect can advantageously be 

applied to the detection of weak optical signals. A detailed analysis 

of the noise performance suggests thatthe "in principle" sensitivity 

of CEL detectors might exceed the standard quantum limit. A theoreti- 

cal upper limit for the sensitivity increase is established, 

In the optical detection of small changes of a given physical 

quantity the change is converted into a phase shift (in the passive 

scheme) or frequency shift (active scheme) of a laser field. This is 

accomplished by sending the laser light through or generating it in a 

cavity whose optical path length is sensitive to the physical effect 

to be detected. The shift is measured by beating the output light with 

that from a reference laser. 

In this paper we deal with active detectors. In the active detec- 

tion scheme the limiting noise source is the fluctuation, caused by 

independent spontaneous emission events, in the relative phase between 

the signal and reference lasers. It has been shown in a recent paper 

that the linewidth and the associated uncertainty in the relative 

phase may be eliminated by preparing the laser medium in a coherent 
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superposition of two upper states [I], as e.g. in the quantum beat 

laser and Hanle laser. 

In the present paper we develop a nonlinear theory of the CEL 

quantum beat laser. The key feature of our approach is that, by intro- 

ducing appropriately defined "dressed states", the strong classical 

interaction of upper two levels is eliminated and, in terms of these 

dressed states, we have two uncoupled upper states. Then we show that 

the particular detuning conditions of Ref. 1 amount to selecting one 

of the dressed states as the upper state for the laser transitions. 

In fact t one can, at this point, introduce two orthogonal dressed 

modes and show that, when the above conditions are met, only one of 

them will l~se [2]. A similar "dressed atom-dressed mode" picture 

applies to the case of a Hanle laser, as well [3]. The CEL operation 

can now be interpreted as follows. The original two bare modes can 

both be expressed in terms of the single lasing "dressed mode". In 

particular, the spontaneous emission contribution into both ba~e modes 

will be common and they cancel from the beat signal. This is the phy- 

sical origin of the quenching of quantum noise. 

In the next step we show that, if there is an additional frequency 

shift between the two modes due to some physical effect (change of arm 

length due to gravity waves or change of path lengths between two 

counterpropagating waves in a ring interferometer like in the Sagnac 

effect) then, the minimum detactable frequency might in principle be 

by a factor 

E = ~ (i) 

Yc 

smaller than the standard quantum limit. Here Yc is the cavity line- 

width (inverse of photon lifetime in the cavity) and ~ is a characte- 

ristic frequency of the effect to be detected (~ is the frequency of 

gravity waves for gravity wave detectors and the rotation for laser 

gyros). However, when CEL operation occurs, for a large range of para- 

meters also frequency locking occurs and in this case £ should simply 

be replaced by i. In this case the CEL detector operates on the stan- 

dard quantum limit. It still has the advantage over the usual active 

systems that the signal appears directly as a phase shift and not as 

a frequency shift and the system is free of the so-called "dead band" 

associated with active systems of detection. 

The most interesting aspect of CEL detectors is that, by simply 

increasing its geometrical dimensions, it can be unlocked. This leads 
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to the following requirement 

s ~__> 1 
Yc 

(1) 

where S is a characteristic scaling factor of the effect to be mea- 

sured. Its explicit expression for the Sagnac effect is 

4A s = x-~ (3) 

where A is the area, p the perimeter of the ring cavity and X is 

the reduced wavelength. Using this in (2) we find 

2 c t 2 1 
r > (4) 

16 z 2 

as the unlocking condition. Here c is the velocity of light and t 

is the transmission of mirrors. We also used the standard expression 

of Yc via c, p and t If we are in the unlocked regime the 

sensitivity improvement is not quite as large as one might expect it 

from (i) because Yc decreases with the increase of the geometrical 

dimensions but it can still be quite significant. For example, for 

case of detecting a rotation rate equal to that of the earth (-i0 -4 Hc) 

with the help of an unlocked CEL Sagnac detector £ ~ 10 -3 . This is 

a significant effect and might render some of the predicted effects of 

general relativity observable. 

The author is indebted for several stimulating discussions on 

different aspects of the problem to M.O. Scully, M~ @rszag and L.M. 

Pedrotti. This work was supported by the ONR. 
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LIGHT PRESSURE INDUCED NONLINEAR DISPERSION 

IN A DOPPLER-BROADENED MEDIUM 

R. Grimm, Chr. Tamm e and J. Mlynek 
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Swiss Federal Institute of Technology (ETH) ZUrich 
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In recent years resonant light pressure effects have attracted Increasing attention /1 / .  While 

laser cooling of atoms in a beam is an example of special practical interest, resonant light 

pressure also affects the atomic veloctty distribution in a Doppler-broadened gaseous sample. Only 

recently, however, this simple but basic situation has been analyzed In some more detail: it has 

been found that the effect of radiation pressure on the atomic velocity distribution can strongly 

modify the non/Inear susceptlbt/lty of a gas giving rise to new phenomena in i t s  optical response 

/2 ,3 / ;  most Importantly, a nonlinear dispersion has been predicted that displays an even symmetry 
with respect to the optical Doppler detuning / 3 / .  Here, we give a brief theoretical outline of this 

I/ght pressure-Induced nonl/near dispersion; in addition, we propose a simple experiment to 

measure this novel effect. 
We calculate the optical response of a Doppler-broadened medium under conditions of narrow 

bandwidth laser excitation taking into account photon momentum transfer. The atomic medium is 

modeled as an ensemble of two-level atoms with a Lorentzlan velocity distribution. Using an 

appropriate density matrix formalism, a perturbatlve treatment yields the following result for the 

total Index of refraction n / 4 / :  
-8  + ¢rt r2(1+2r2)  -3 /2  

n -  1 "~ 8 2 +  1 

Here l~'s r = 1~'2k2/2m is the photon recoil energy, r denotes the optical Rabl frequency normalized 

to the homogeneous optical linewidth r ,  t is the effecUve transit time of the atoms through the 

laser beam and ~ describes the detuning of the light field tn units of the Doppler width ku. A 

representative plot of this equation Is shown in Fig. 1; quite obviously resonant light pressure can 

drastically modify the dispersion of an atomic sample. We note that the even symmetry of the 

n-1  (orb. units) 

° , t . ~  . . . .  ~ ' ° ' ° ° ° ' " ' ° ' ' "  ~° ° " ° ' ° ' * ' ° °  

I \ " - " ~ I "  

FIR. 1: Dispersion curves showing the 

total dispersion ( ~ )  as the sum of the 

nonllnear light pressure-induced part ( ...... ) 

and the ordinary linear dispersion ( - - - )  

for sr~:=-I and r= l ,  
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nonlinear disperslon feature (Fig. 1, • ..... ) results from the fact that the spontaneous scattering 

force does not depend on the sign of the laser detuning from llne center. 

For the observation of this new phenomenon, we propose an experiment based on FM spec- 

troscopy / 5 / .  With the use of this simple and sensitive technique (Fig. 2) a phase shift of the 

strong carrier wlth respect to the weak sldebat~ds can be measured. Here, for a modulation 

frequency r(<{Orn<~:ku, the weak sldebands can act as a phase reference for the light pressure 

induced nonlinear dispersion of the carrier (Rg. 2b); this dispersion feature is reflected directly in 

the In-phase modulation component of the transmitted laser intensity. The corresponding signal 

shows an even symmetry with respect to the laser detuning $; moreover, its strength depends on 

the Rabi frequency and, via the atomic transit time t,  aJso on the laser beam diameter / 4 / .  
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FiR. 2: 
(a) Proposed experimental scheme to 

observe the light pressure-induced 

nonlinear dispersion: EOM, electro- 

optic phase modulator; PD, photo 

detector. 

(b) Schematic of the FM laser field 

(modulation frequency ~rn, propagation 

in z-directlon) interacting with the 

Doppler-broadened sample. The strong 

carrier distorts the velocity distribu- 

tion N(v=) by its light pressure. This 

gives rise to a phase shift with 

respect to the weak stdebands that 

shows up In the In-phase modulation 

component of the transmitted light 

Intensity. 

Experiments to verify these predictions are currently In preparation. As an atomic sample the 

Ytterbium ),=555.7nm 1So-3P 1 line might be an interesting candidate: Here ¢r~=l can be fulfilled 

using a beam diameter of about lcm and r= l  can be obtained easily with laser intensities of less 

than 1 mW/cm 2. 
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UNSTABLE PERIODIC ATOMIC ORBITALS 

Hubert Klar 

Fakult~t fHr Physik, Universit~t Freiburg 

Hermann Herder Str. 3, D-7800 Freiburg 

Simple examples of nonintegrable mechanical systems like stadium problems have estab- 

lished the fundamental role of unstable periodic classical trajectories for the 

structure of the corresponding quantum spectrum (I). These investigations show clear- 

ly in a one-to-one correspondence that quantum wave functions are mainly distributed 

along classical periodic orbits. There is however in general no simple relation bet- 

ween classical solutions and energy positions of individual quantum states except 

that the statistical distribution of energy levels avoids accumulations because the 

set of periodic orbits is usually of measure zero with respect to nonperiodic, in 

general chaotic orbits. 

The structure of atomic resonance spectra near thresholds of multiple ionisation 

is still largely unexplored. The problem is a difficult one, experimentally due to 

the lack of lasers in the spectral range of interest, and theoretically due to the 

high degree of non-integrability of the N-body (N~3) Coulomb problem. The importance 

of the problem is augmented by the fact that we expect universal properties for all 

atoms depending only on the number of highly excited electrons (two in the following 

for simplicity) because the core is a passive spectator in such a situation. For the 

reason mentioned above recent theoretical research has focussed to find periodic 

classical trajectories for two-electron atoms (3-body problem), All these orbits 

must be unstable because the potential surface has no minimum. Below we report our 

results. 

One class of periodic solutions describes rotating rigid bodies (2). It can be 

shown that exactly two configurations exist, a linear rotor and a top. In both ca- 

ses the electrons perform strongly correlated circular orbits with radii equal to 

each o~her, see Fig. ] and 2, such that the centrifugal force cancels all Coulomb 

forces. The spectrum of local Liapunov exponents identifies these trajectories as 

hyperbolic fixed points (3). 

A second class of periodic solutions describes a "breathing atom". Here each elec- 

tron performs an ellipse, both ellipses are equal in size and opposite to each other, 

see Fig, 3. The non-precessing ellipses may be regarded as Kepler ellipses with nuc- 

lear charge Z-.25. The straight line limit of the ellipses is known as Wannier so-- 

lution (4), the obvious generallsation to ellipses seems never have been published 

(5). Also these solutions are unstable because the motion of the electron pair pro- 

ceeds along a potential ridge. 
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A quantisation for unstable periodic orbits is unknown. The identification of.,such 

orbits in quantum spectra is simplified in two limiting cases. In the case of a weak 

instability (small positiv Liapunov exponent) one may regard the orbit as approxima- 

tely stable, and quantise the degree of freedom according to Bohr--Sommerfeld. This 

would lead to atomic rotation spectra for the rotor and the top, 

E L = I - b/L(L+I) 

and to a series of ridge riding resonances 

E N = I - .5(Z-O.25)2/(N+2.5) 2 

Here I is the threshold for double ionisation, L and N are integers >>] and b is a 

rotation constant known for rotor and top. In the opposite limit of a large Liapunov 

exponent the interaction of the periodic orbit with a chaotic background leads to 

interference pattern. The Fourier transform of excitation cross sections should then 

spike at the classical recurrence times. 

a 
+ 

Fig, ; 

e 

÷ 

& 

Fig. 2 Fig. 3 
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Virtual cloud effects in spontaneous decay 

G. Compagno, A. Santangelo 

Istituto di Fisica dell' UniversitY, via Archirafi 36 

90123 Palermo, Italy 

An atom interacting with the e.m. field when is in its ground state is dressed 

by a cloud of virtual photons. This cloud is connected to the level's radiative 

shift. 1 Moreover the atom's bare ground state is not asymptotically stationary being 

its time evolution influenced by the interaction. It was long ago suggested that some 

processes, like radiative decays, should be considered to oceour between dressed sta- 

tes instead than between hare ones. The one-photon decay and resonance scattering 
2 

from one atom have been studied taking into account the atom dressed ground state. 

0nly the excited levels' decay time has been calculated, Moreover in the one-photon 

atom's decay the transition amplitudes between dressed states differ from the corre- 

sponding ones between bare states only for high order corrections. 

It can be shown that starting from a bare state, the time it becomes effectively 

dressed by a virtual cloud is usually short and at most of the order of the inverse 

of the transition frequency between the given state an the immediate higher one. This 

leads one to expect that also for excited states, whenever the dressing time is short 

compared to the decay time~ the dressing should be taken into account. In the two- 

photon decay from a metastahle atomic state the Feynman diagrams describing~at lowest 

order, dressing are of the same order of the lowest order diagrams for two-photon de- 

cay. This imp~e6that,for this proeess~the differences arising by considering dressed 

instead than bare states, should be more significant than the correspondin~ ones in 

the one-photon decay. 

Here we consider a model three-level atom, with bare eigenstates ]i> ,(i=1,2,3) 

and interacting with the e. m. field, described by the Hamiltonian H=Ho+V, with 

Ho = ~i'i)(il + ~'-j ~--~j a~jakj (j=l,2) 

= j[~kj(~ + ak.)I3>(jl + H.c,] (i) and V = ~j Vj3 ~ kj 
-- - --j 

With this Hamiltonian the intermediate level 2 executes a two-photon decay to level 

I via level 3. It is dressed at the same order by virtual photons emitted in the vir- 
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tual transition 2~-)3. At the same order level I is dressed by virtual photons due to 

transition lo3. To take into account the dressing of both initial and final state,we 

subject the Hamiltonian (i) to a unitary transformation T=exp(iS) with S~S . So it is 

obtained the transformed Hamiltonian ~=THT -I. By developing S in powers of the eou- 

piing constant~ as S=~Sn, where Sn O(n) we obtain 

T H T -I ~o +Z~ n , = = (2) 

where ~ is the O(n) effective interaction. The S can be choosen so that in ~ there 
n n n 

are no terms that,at order n, give rise to unobservables virtual transitions. ~o con- 

tains only diagonal terms at all orders. Up to second order we obtain: 

~ = ~l ili)~il + ~3 ~j~j ak. ak. #.3 "3 + ~ (3) 

where ~3=~,~ and ~.= ~+-~ ~ 12/( ~ +~ ) are the dressed atomic frequencies J J ~. ~. 3j k. 
while ~3j =~3-~'] and H~ eon~azns the effeetsJof dressing on photon states and does 

not give a contribution in our ease. The effective interaction terms are: 

~i = ~ ~ ~ ~- (~k ak l j)f31 + H.c.) 
-j-jj 

~2 =-~k l~2(~k l~2  + ~iEk2)(aklak2'1>(21 + H'c ' )+  ~,2 (4) 
V 2~' contains terms which are effective only if photons are present both in the initial 

and final states. The relevant interaction terms have a r.w. form also in the second 

order ~2 which now couples directly levels 2 and I. Now it is possible to use the tra- 

nsformed Hamiltonian in the resolvent ~(z)=I/(z-H) in order to get the transition am- 

plitudes between dressed states I which are now eigenstates of (3). The persistence am- 

plitude inthe dressed state 2 is ~2,2 = exp(-i~gt-~t/2)~ with a decay time 

% :l]r  i 
It differs from the bare decay time by the replacement of dressed atomic and photon 

energies in place of the bare ones. The dressed lineshape is given hy the square of am- 

plitude: r ]q -1 

In (7)the first factor in the R.H.S. can be associated to the virtual photon distri- 

bution in the virtual cloud arond the excited level 2. Eq. (7) differs from the bare 

amplitude for the change of the denominator of the first R.H.S. factor by [(~31-~_i)2+ 

2 ]-l 
~3/4 .So there, is a relevan~ difference between dressed and bare lineshapes. 
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